- Blog Categories
- Software Development
- Data Science
- AI/ML
- Marketing
- General
- MBA
- Management
- Legal
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- Software Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Explore Skills
- Management Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
- Home
- Blog
- Artificial Intelligence
- A Guide to Linear Regression Using Scikit [With Examples]
A Guide to Linear Regression Using Scikit [With Examples]
Updated on Dec 30, 2024 | 9 min read
Share:
Supervised learning algorithms are generally of two types: Regression and classification with the prediction of continuous and discrete outputs.
Best Machine Learning and AI Courses Online
The following article will discuss linear regression and its implementation using one of the most popular machine learning libraries of python, the Scikit-learn library. Tools for machine learning and statistical models are available in the python library for classification, regression, clustering, and dimensionality reduction. Written in the python programming language, the library is built upon the NumPy, SciPy, and Matplotlib python libraries.
Linear Regression
The linear regression performs the task of regression under the supervised learning method. Based on independent variables, a target value is predicted. The method is mostly used for forecasting and identifying a relationship between the variables.
In-demand Machine Learning Skills
In algebra, the term linearity means a linear relationship between variables. A straight line is deduced between the variables in a two-dimensional space.
If a line is a plot between the independent variables on the X-axis and the dependent variables on the Y-axis, a straight line is achieved through linear regression that best fits the data points.
The equation of a straight line is in the form of
Y = mx + b
Where, b= intercept
m= slope of the line
Therefore, through linear regression,
- The most optimal values for the intercept and the slope are determined in two dimensions.
- There is no change in the x and y variables as they are the data features and hence remain the same.
- Only the intercept and the slope values can be controlled.
- Multiple straight lines based on the values of slope and intercept might exist, however through the algorithm of linear regression multiple lines are fitted on the data points and the line with the least error is returned.
Join the Artificial Intelligence Course online from the World’s top Universities – Masters, Executive Post Graduate Programs, and Advanced Certificate Program in ML & AI to fast-track your career.
Linear Regression with Python
For implementing linear regression in python, proper packages are to be applied along with its functions and classes. The package NumPy in Python is open source and allows several operations over the arrays, both single as well as multidimensional arrays.
Another widely used library in python is Scikit-learn which is used for machine learning problems.
Scikit-learN
The Scikit-learn library offers the developers algorithms based on both supervised and unsupervised learning. The open-source library of python is designed for machine learning tasks.
The data scientists can import the data, preprocess it, plot it, and predict data through the use of scikit-learn.
David Cournapeau first developed scikit-learn in 2007, and the library has seen growth since decades.
Tools provided by scikit-learn are:
- Regression: Includes the Logistic Regression and Linear regression
- Classification: Includes the method of K-Nearest Neighbors
- Selection of a model
- Clustering: Includes both K-Means++ and K-Means
- Preprocessing
Advantages of the library are:
- The learning and implementation of the library are easy.
- It is an open-source library and hence free.
- Machine learning aspects can be covered up including deep learning.
- It is a powerful and versatile package.
- The library has detailed documentation.
- One of the most used toolkits for machine learning.
Importing scikit-learn
The scikit-learn has to be installed first through pip or through conda.
- Requirements: 64-bit version of python 3 with installed libraries NumPy and Scipy. Also for data plot visualization, matplotlib is required.
Installation command: pip install -U scikit-learn
Then verify whether the installation is complete
Installation of Numpy, Scipy, and matplotlib
Installation can be confirmed through:
Linear regression through Scikit-learn
Implementation of the linear regression through the package scikit-learn involves the following steps.
- The packages and the classes required are to be imported.
- Data is required to work with and also to carry on the appropriate transformations.
- A regression model is to be created and fitted with the existing data.
- The model fitting data is to be checked to analyze if the model created is satisfactory.
- Predictions are to be made through the application of the model.
The package NumPy and the class LinearRegression are to be imported from the sklearn.linear_model.
The functionalities required for sklearn linear regression are all present to finally implement linear regression. The sklearn.linear_model.LinearRegression class is used for performing regression analysis( both linear and polynomial ) and carrying out predictions.
For any machine learning algorithms and scikit learn linear regression, the dataset has to be imported first. Three options are available in Scikit-learn to get the data:
- Datasets like iris classification or the set of regression for housing price of Boston.
- Datasets of the real world can be downloaded from the internet directly through Scikit-learn predefined functions.
- A dataset can be generated randomly for matching against a specific pattern through the Scikit-learn data generator.
Whatever option is selected, the module datasets have to be imported.
import sklearn.datasets as datasets
1. The classification set of iris
iris = datasets.load_iris()
The dataset iris is stored as a 2D array data field of n_samples * n_features. Its importation is carried out as an object of a dictionary. It contains all the necessary data along with the metadata.
The functions DESCR, shape and _names can be used to get descriptions and formatting of the data. Printing of function results will display the information of the dataset that could be needed while working on the iris dataset.
The following code will load the information of the iris dataset.
2. Generation of regression data
If there is no requirement for built-in data, then the data can be generated through a distribution that can be chosen.
Generating data of regression with a set of 1 informative feature and 1 feature.
X , Y = datasets.make_regression(n_features=1, n_informative=1)
The data generated is saved in a 2D dataset with the objects x, and y. The characteristics of the generated data can be changed through changing parameters of the function make_regression.
In this example, the parameters of the informative features and features are changed from a default value of 10 to 1.
Other parameters considered are the samples and targets where the number of target and sample variables tracked are controlled.
- The features that provide useful information to the algorithms of ML are referred to as the informative features while those that are unhelpful are referred to as on-informative features.
3. Plotting data
The data is plotted using the matplotlib library. First, the matplotlib has to be imported.
Import matplotlib.pyplot as plt
The above graph is plotted through the matplotlib through the code
In the above code:
- The tuple variables are unpacked and saved as separate variables in line 1 of the code. Therefore, the separate attributes can be manipulated and saved.
- The dataset x, y is used to generate a scatter plot through line 2. With the availability of the marker parameter in matplotlib, the visuals are enhanced by marking the data points with a dot (o).
- The title of the generated plot is set through line 3.
- The figure can be saved as a .png image file and then the current figure is closed.
The regression plot generated through the above code is
Figure 1: The regression plot generated from the code above.
4. Implementing algorithm of linear regression
Using the sample data of the price of Boston housing, the algorithm of Scikit-learn linear regression is implemented in the following example. Like other ML algorithms, the dataset is imported and then trained using the previous data.
Linear method of regression is used by businesses, as it is a predictive model predicting the relationship between a numerical quantity and its variables to the output value with meaning having a value in reality.
When a log of earlier data is present, the model can be best applied as it can predict the future outcomes of what will be happening in the future if there is a continuation of the pattern.
Mathematically, the data can be fitted for minimizing the sum of all residuals that is existing between the data points and the value predicted.
The following snippet shows the implementation of sklearn linear regression.
The code is explained as:
- Line 6 loads the dataset called load_boston.
- Dataset is split in line 12, i.e. the training set with 80% data and the set of the test with 20% data.
- Creation of a model of linear regression at line 23 and then trained at.
- The performance of the model is evaluated at linen 29 through calling mean_squared_error.
The sklearn linear regression plot is shown below:
Linear regression model of the Boston housing prices sample data
In the above figure, the red line represents the linear model that has been solved for the sample data of Boston housing price. Blue points represent the original data and the distance between the red line and the blue points represent the sum of the residual. The goal of the scikit-learn linear regression model is to reduce the sum of the residuals.
Popular AI and ML Blogs & Free Courses
Conclusion
The article discussed linear regression and its implementation through the use of an open-source python package called scikit-learn. By now, you are able to get the concept of how to implement linear regression through this package. It is worth learning how to use the library for your data analysis.
If you have an interest in exploring the topic further, like the implementation of python packages in machine learning and AI-related problems, you can check the course Master of Science in Machine Learning & AI offered by upGrad. Targeting the entry-level professionals of 21 to 45 years, the course aims to train the students in machine learning through 650+ hour’s online training, 25+ case studies, and assignments. Certified from LJMU, the course offers the perfect guidance and job placement assistance. If you have any questions or queries, leave us a message, we will be happy to contact you.
Get Free Consultation
By submitting, I accept the T&C and
Privacy Policy
Top Resources