Explore Courses
Liverpool Business SchoolLiverpool Business SchoolMBA by Liverpool Business School
  • 18 Months
Bestseller
Golden Gate UniversityGolden Gate UniversityMBA (Master of Business Administration)
  • 15 Months
Popular
O.P.Jindal Global UniversityO.P.Jindal Global UniversityMaster of Business Administration (MBA)
  • 12 Months
New
Birla Institute of Management Technology Birla Institute of Management Technology Post Graduate Diploma in Management (BIMTECH)
  • 24 Months
Liverpool John Moores UniversityLiverpool John Moores UniversityMS in Data Science
  • 18 Months
Popular
IIIT BangaloreIIIT BangalorePost Graduate Programme in Data Science & AI (Executive)
  • 12 Months
Bestseller
Golden Gate UniversityGolden Gate UniversityDBA in Emerging Technologies with concentration in Generative AI
  • 3 Years
upGradupGradData Science Bootcamp with AI
  • 6 Months
New
University of MarylandIIIT BangalorePost Graduate Certificate in Data Science & AI (Executive)
  • 8-8.5 Months
upGradupGradData Science Bootcamp with AI
  • 6 months
Popular
upGrad KnowledgeHutupGrad KnowledgeHutData Engineer Bootcamp
  • Self-Paced
upGradupGradCertificate Course in Business Analytics & Consulting in association with PwC India
  • 06 Months
OP Jindal Global UniversityOP Jindal Global UniversityMaster of Design in User Experience Design
  • 12 Months
Popular
WoolfWoolfMaster of Science in Computer Science
  • 18 Months
New
Jindal Global UniversityJindal Global UniversityMaster of Design in User Experience
  • 12 Months
New
Rushford, GenevaRushford Business SchoolDBA Doctorate in Technology (Computer Science)
  • 36 Months
IIIT BangaloreIIIT BangaloreCloud Computing and DevOps Program (Executive)
  • 8 Months
New
upGrad KnowledgeHutupGrad KnowledgeHutAWS Solutions Architect Certification
  • 32 Hours
upGradupGradFull Stack Software Development Bootcamp
  • 6 Months
Popular
upGradupGradUI/UX Bootcamp
  • 3 Months
upGradupGradCloud Computing Bootcamp
  • 7.5 Months
Golden Gate University Golden Gate University Doctor of Business Administration in Digital Leadership
  • 36 Months
New
Jindal Global UniversityJindal Global UniversityMaster of Design in User Experience
  • 12 Months
New
Golden Gate University Golden Gate University Doctor of Business Administration (DBA)
  • 36 Months
Bestseller
Ecole Supérieure de Gestion et Commerce International ParisEcole Supérieure de Gestion et Commerce International ParisDoctorate of Business Administration (DBA)
  • 36 Months
Rushford, GenevaRushford Business SchoolDoctorate of Business Administration (DBA)
  • 36 Months
KnowledgeHut upGradKnowledgeHut upGradSAFe® 6.0 Certified ScrumMaster (SSM) Training
  • Self-Paced
KnowledgeHut upGradKnowledgeHut upGradPMP® certification
  • Self-Paced
IIM KozhikodeIIM KozhikodeProfessional Certification in HR Management and Analytics
  • 6 Months
Bestseller
Duke CEDuke CEPost Graduate Certificate in Product Management
  • 4-8 Months
Bestseller
upGrad KnowledgeHutupGrad KnowledgeHutLeading SAFe® 6.0 Certification
  • 16 Hours
Popular
upGrad KnowledgeHutupGrad KnowledgeHutCertified ScrumMaster®(CSM) Training
  • 16 Hours
Bestseller
PwCupGrad CampusCertification Program in Financial Modelling & Analysis in association with PwC India
  • 4 Months
upGrad KnowledgeHutupGrad KnowledgeHutSAFe® 6.0 POPM Certification
  • 16 Hours
O.P.Jindal Global UniversityO.P.Jindal Global UniversityMaster of Science in Artificial Intelligence and Data Science
  • 12 Months
Bestseller
Liverpool John Moores University Liverpool John Moores University MS in Machine Learning & AI
  • 18 Months
Popular
Golden Gate UniversityGolden Gate UniversityDBA in Emerging Technologies with concentration in Generative AI
  • 3 Years
IIIT BangaloreIIIT BangaloreExecutive Post Graduate Programme in Machine Learning & AI
  • 13 Months
Bestseller
IIITBIIITBExecutive Program in Generative AI for Leaders
  • 4 Months
upGradupGradAdvanced Certificate Program in GenerativeAI
  • 4 Months
New
IIIT BangaloreIIIT BangalorePost Graduate Certificate in Machine Learning & Deep Learning (Executive)
  • 8 Months
Bestseller
Jindal Global UniversityJindal Global UniversityMaster of Design in User Experience
  • 12 Months
New
Liverpool Business SchoolLiverpool Business SchoolMBA with Marketing Concentration
  • 18 Months
Bestseller
Golden Gate UniversityGolden Gate UniversityMBA with Marketing Concentration
  • 15 Months
Popular
MICAMICAAdvanced Certificate in Digital Marketing and Communication
  • 6 Months
Bestseller
MICAMICAAdvanced Certificate in Brand Communication Management
  • 5 Months
Popular
upGradupGradDigital Marketing Accelerator Program
  • 05 Months
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in Corporate & Financial Law
  • 12 Months
Bestseller
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in AI and Emerging Technologies (Blended Learning Program)
  • 12 Months
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in Intellectual Property & Technology Law
  • 12 Months
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in Dispute Resolution
  • 12 Months
upGradupGradContract Law Certificate Program
  • Self paced
New
ESGCI, ParisESGCI, ParisDoctorate of Business Administration (DBA) from ESGCI, Paris
  • 36 Months
Golden Gate University Golden Gate University Doctor of Business Administration From Golden Gate University, San Francisco
  • 36 Months
Rushford Business SchoolRushford Business SchoolDoctor of Business Administration from Rushford Business School, Switzerland)
  • 36 Months
Edgewood CollegeEdgewood CollegeDoctorate of Business Administration from Edgewood College
  • 24 Months
Golden Gate UniversityGolden Gate UniversityDBA in Emerging Technologies with Concentration in Generative AI
  • 36 Months
Golden Gate University Golden Gate University DBA in Digital Leadership from Golden Gate University, San Francisco
  • 36 Months
Liverpool Business SchoolLiverpool Business SchoolMBA by Liverpool Business School
  • 18 Months
Bestseller
Golden Gate UniversityGolden Gate UniversityMBA (Master of Business Administration)
  • 15 Months
Popular
O.P.Jindal Global UniversityO.P.Jindal Global UniversityMaster of Business Administration (MBA)
  • 12 Months
New
Deakin Business School and Institute of Management Technology, GhaziabadDeakin Business School and IMT, GhaziabadMBA (Master of Business Administration)
  • 12 Months
Liverpool John Moores UniversityLiverpool John Moores UniversityMS in Data Science
  • 18 Months
Bestseller
O.P.Jindal Global UniversityO.P.Jindal Global UniversityMaster of Science in Artificial Intelligence and Data Science
  • 12 Months
Bestseller
IIIT BangaloreIIIT BangalorePost Graduate Programme in Data Science (Executive)
  • 12 Months
Bestseller
O.P.Jindal Global UniversityO.P.Jindal Global UniversityO.P.Jindal Global University
  • 12 Months
WoolfWoolfMaster of Science in Computer Science
  • 18 Months
New
Liverpool John Moores University Liverpool John Moores University MS in Machine Learning & AI
  • 18 Months
Popular
Golden Gate UniversityGolden Gate UniversityDBA in Emerging Technologies with concentration in Generative AI
  • 3 Years
Rushford, GenevaRushford Business SchoolDoctorate of Business Administration (AI/ML)
  • 36 Months
Ecole Supérieure de Gestion et Commerce International ParisEcole Supérieure de Gestion et Commerce International ParisDBA Specialisation in AI & ML
  • 36 Months
Golden Gate University Golden Gate University Doctor of Business Administration (DBA)
  • 36 Months
Bestseller
Ecole Supérieure de Gestion et Commerce International ParisEcole Supérieure de Gestion et Commerce International ParisDoctorate of Business Administration (DBA)
  • 36 Months
Rushford, GenevaRushford Business SchoolDoctorate of Business Administration (DBA)
  • 36 Months
Liverpool Business SchoolLiverpool Business SchoolMBA with Marketing Concentration
  • 18 Months
Bestseller
Golden Gate UniversityGolden Gate UniversityMBA with Marketing Concentration
  • 15 Months
Popular
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in Corporate & Financial Law
  • 12 Months
Bestseller
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in Intellectual Property & Technology Law
  • 12 Months
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in Dispute Resolution
  • 12 Months
IIITBIIITBExecutive Program in Generative AI for Leaders
  • 4 Months
New
IIIT BangaloreIIIT BangaloreExecutive Post Graduate Programme in Machine Learning & AI
  • 13 Months
Bestseller
upGradupGradData Science Bootcamp with AI
  • 6 Months
New
upGradupGradAdvanced Certificate Program in GenerativeAI
  • 4 Months
New
KnowledgeHut upGradKnowledgeHut upGradSAFe® 6.0 Certified ScrumMaster (SSM) Training
  • Self-Paced
upGrad KnowledgeHutupGrad KnowledgeHutCertified ScrumMaster®(CSM) Training
  • 16 Hours
upGrad KnowledgeHutupGrad KnowledgeHutLeading SAFe® 6.0 Certification
  • 16 Hours
KnowledgeHut upGradKnowledgeHut upGradPMP® certification
  • Self-Paced
upGrad KnowledgeHutupGrad KnowledgeHutAWS Solutions Architect Certification
  • 32 Hours
upGrad KnowledgeHutupGrad KnowledgeHutAzure Administrator Certification (AZ-104)
  • 24 Hours
KnowledgeHut upGradKnowledgeHut upGradAWS Cloud Practioner Essentials Certification
  • 1 Week
KnowledgeHut upGradKnowledgeHut upGradAzure Data Engineering Training (DP-203)
  • 1 Week
MICAMICAAdvanced Certificate in Digital Marketing and Communication
  • 6 Months
Bestseller
MICAMICAAdvanced Certificate in Brand Communication Management
  • 5 Months
Popular
IIM KozhikodeIIM KozhikodeProfessional Certification in HR Management and Analytics
  • 6 Months
Bestseller
Duke CEDuke CEPost Graduate Certificate in Product Management
  • 4-8 Months
Bestseller
Loyola Institute of Business Administration (LIBA)Loyola Institute of Business Administration (LIBA)Executive PG Programme in Human Resource Management
  • 11 Months
Popular
Goa Institute of ManagementGoa Institute of ManagementExecutive PG Program in Healthcare Management
  • 11 Months
IMT GhaziabadIMT GhaziabadAdvanced General Management Program
  • 11 Months
Golden Gate UniversityGolden Gate UniversityProfessional Certificate in Global Business Management
  • 6-8 Months
upGradupGradContract Law Certificate Program
  • Self paced
New
IU, GermanyIU, GermanyMaster of Business Administration (90 ECTS)
  • 18 Months
Bestseller
IU, GermanyIU, GermanyMaster in International Management (120 ECTS)
  • 24 Months
Popular
IU, GermanyIU, GermanyB.Sc. Computer Science (180 ECTS)
  • 36 Months
Clark UniversityClark UniversityMaster of Business Administration
  • 23 Months
New
Golden Gate UniversityGolden Gate UniversityMaster of Business Administration
  • 20 Months
Clark University, USClark University, USMS in Project Management
  • 20 Months
New
Edgewood CollegeEdgewood CollegeMaster of Business Administration
  • 23 Months
The American Business SchoolThe American Business SchoolMBA with specialization
  • 23 Months
New
Aivancity ParisAivancity ParisMSc Artificial Intelligence Engineering
  • 24 Months
Aivancity ParisAivancity ParisMSc Data Engineering
  • 24 Months
The American Business SchoolThe American Business SchoolMBA with specialization
  • 23 Months
New
Aivancity ParisAivancity ParisMSc Artificial Intelligence Engineering
  • 24 Months
Aivancity ParisAivancity ParisMSc Data Engineering
  • 24 Months
upGradupGradData Science Bootcamp with AI
  • 6 Months
Popular
upGrad KnowledgeHutupGrad KnowledgeHutData Engineer Bootcamp
  • Self-Paced
upGradupGradFull Stack Software Development Bootcamp
  • 6 Months
Bestseller
KnowledgeHut upGradKnowledgeHut upGradBackend Development Bootcamp
  • Self-Paced
upGradupGradUI/UX Bootcamp
  • 3 Months
upGradupGradCloud Computing Bootcamp
  • 7.5 Months
PwCupGrad CampusCertification Program in Financial Modelling & Analysis in association with PwC India
  • 5 Months
upGrad KnowledgeHutupGrad KnowledgeHutSAFe® 6.0 POPM Certification
  • 16 Hours
upGradupGradDigital Marketing Accelerator Program
  • 05 Months
upGradupGradAdvanced Certificate Program in GenerativeAI
  • 4 Months
New
upGradupGradData Science Bootcamp with AI
  • 6 Months
Popular
upGradupGradFull Stack Software Development Bootcamp
  • 6 Months
Bestseller
upGradupGradUI/UX Bootcamp
  • 3 Months
PwCupGrad CampusCertification Program in Financial Modelling & Analysis in association with PwC India
  • 4 Months
upGradupGradCertificate Course in Business Analytics & Consulting in association with PwC India
  • 06 Months
upGradupGradDigital Marketing Accelerator Program
  • 05 Months

Adversarial Machine Learning: Concepts, Types of Attacks, Strategies & Defenses

Updated on 25 November, 2022

5.77K+ views
9 min read

The exponential progress of the previous decades has propelled modern technological advancements in today’s world. We are currently a part of the ongoing ‘Industry 4.0’, at the centre of which are technologies like AI and ML. This industrial revolution involves a global transition towards scientific research and innovation in technologies of neural networks, Machine Learning, and Artificial Intelligence, IoT, digitisation, and much more.

They provide us with an array of benefits in sectors like e-commerce, manufacturing, sustainability, supply chain management, etc. The global market for AI/ML is expected to surpass USD 266.92 billion by 2027 and continues to be a preferred choice of career for graduates everywhere.  

While the adaptation of these technologies is paving the way for the future, we are unprepared for events like Adversarial Machine Learning (AML) attacks. Machine Learning systems that are designed using coding languages like SML, OCaml, F#, etc., rely on programmable codes that are integrated throughout the system.

External AML attacks performed by experienced hackers pose a threat to the integrity and accuracy of these ML systems. Slight modifications to the input data set can cause the ML algorithm to misclassify the feed, and thus reduce the reliability of these systems.

Learn Machine Learning  online from the World’s top Universities – Masters, Executive Post Graduate Programs, and Advanced Certificate Program in ML & AI to fast-track your career.

To equip yourself with the right resources for designing systems that can withstand such AML attacks, enrol in a PG Diploma in Machine Learning offered by upGrad and IIIT Bangalore.

Concepts Centred on Adversarial Machine Learning

Before we delve into the topic of AML, let us establish the definitions of some of the basic concepts of this domain:

  • Artificial Intelligence refers to the ability of a computing system to perform logic, planning, problem-solving, simulation, or other kinds of tasks. An AI mimics human intelligence due to the information fed into it by using Machine Learning techniques.
  • Machine Learning employs well-defined algorithms and statistical models for computer systems, which rely on performing tasks based on patterns and inferences. They are designed to execute these tasks without explicit instructions, and instead use predefined information from neural networks.
  • Neural Networks are inspired by the biological functioning of a brain’s neurons, which are used for systematically programming the observational data into a Deep Learning model. This programmed data helps decipher, distinguish, and process input data into coded information to facilitate Deep Learning.
  • Deep Learning uses multiple neural networks and ML techniques to process unstructured and raw input data into well-defined instructions. These instructions facilitate building multi-layered algorithms automatically through its representation/feature learning in an unsupervised manner.
  • Adversarial Machine Learning is a unique ML technique that supplies deceptive inputs to cause malfunction within a Machine Learning model. Adversarial Machine Learning exploits vulnerabilities within the test data of the intrinsic ML algorithms that make up a neural network. An AML attack can compromise resultant outcomes and pose a direct threat to the usefulness of the ML system.

To learn the key concepts of ML, such as Adversarial Machine Learning, in-depth, enrol for the Masters of Science (M.Sc) in Machine Learning & AI from upGrad.

Types of AML Attacks 

Adversarial Machine Learning attacks are categorised based on three types of methodologies.

They are:

1. Influence on Classifier

Machine Learning systems classify the input data based on a classifier. If an attacker can disrupt the classification phase by modifying the classifier itself, it can result in the ML system losing its credibility. Since these classifiers are integral to identifying data, tampering with the classification mechanism can reveal vulnerabilities that can be exploited by AMLs.

2. Security Violation

During the learning stages of an ML system, the programmer defines the data that is to be considered legitimate. If legitimate input data is improperly identified as malicious, or if malicious data is provided as input data during an AML attack, the rejection can be termed as a security violation.

3. Specificity

While specific targeted attacks allow specific intrusions/disruptions, indiscriminate attacks add to the randomness within the input data and create disruptions through decreased performance/failure to classify.

AML attacks and their categories are conceptually branched out of the Machine Learning domain. Due to the rising demand for ML systems, nearly 2.3 million job vacancies are available for ML and AI engineers, according to Gartner.[2]  You can read more about how Machine Learning Engineering can be a rewarding career in 2021.

Adversarial Machine Learning Strategies

To further define the goal of the adversary, their prior knowledge of the system to be attacked and the level of possible manipulation of data components can assist in defining Adversarial Machine Learning strategies.

They are: 

1. Evasion

ML algorithms identify and sort the input data set based on certain predefined conditions and calculated parameters. The evasion type of AML attack tends to evade these parameters used by algorithms to detect an attack. This is carried out by modifying the samples in a manner that can avoid detection and misclassify them as legitimate input.

They do not modify the algorithm but instead spoof the input by various methods so that it escapes the detection mechanism. For example, anti-spam filters that analyse the text of an email are evaded with the use of images that have embedded text of malware code/links. 

2. Model extraction

Also known as ‘model stealing’; this type of AML attacks is carried out on ML systems to extract the initial training data used for building the system. These attacks are essentially capable of reconstructing the model of that Machine Learning system, which can compromise its efficacy. If the system holds confidential data, or if the nature of the ML itself is proprietary/sensitive, then the attacker could use it for their benefit or disrupt it.

3. Poisoning

This type of Adversarial Machine Learning attack involves disruption of the training data. Since ML systems are retrained using data collected during their operations, any contamination caused by injecting samples of malicious data can facilitate an AML attack. For poisoning data, an attacker needs access to the source code of that ML and retrains it to accept incorrect data, thus inhibiting the functioning of the system.

Proper knowledge of these Adversarial Machine Learning attack strategies can enable a programmer to avoid such attacks during operation. If you need hands-on training for designing ML systems that can withstand AML attacks, enrol for the Master’s in Machine Learning and AI offered by upGrad.

Specific Attack Types

Specific attack types that can target Deep Learning systems, along with conventional ML systems like linear regression and ‘support-vector machines’, can threaten the integrity of these systems. They are: 

  • Adversarial examples, such as FMCG, PGD, C&W, and patch attacks, cause the machine to misclassify, as they appear normal to the user. Specific ‘noise’ is used within the attack code to cause malfunction of the classifiers.
  • Backdoor/Trojan attacks overload an ML system by bombarding it with irrelevant and self-replicating data that prevents it from optimum functioning. These Adversarial Machine Learning attacks are difficult to protect from, as they exploit the loopholes that exist within the machine.
  • Model Inversion rewrites classifiers to function in an opposite manner to which they were originally intended. This inversion prevents the machine from performing its basic tasks due to the changes applied to its inherent learning model.
  • Membership Inference Attacks (MIAs) can be applied to SL (supervised learning) and GANs (Generative Adversarial Networks). These attacks rely on the differences between the data sets of initial training data and external samples that pose a privacy threat. With access to the black-box and its data record, inference models can predict whether the sample was present in the training input or not.

To protect ML systems from these types of attacks, ML programmers and engineers are employed across all the major MNCs. Indian MNCs that host their R&D centres to encourage innovation in Machine Learning, offer salaries ranging from 15 to 20 Lakh INR per annum.[3] To learn more about this domain and secure a hefty salary as an ML engineer, enrol in an Advanced Certification in Machine Learning and Cloud hosted by upGrad and IIT Madras.

Defences Against AMLs

To defend against such Adversarial Machine Learning attacks, experts suggest that programmers rely on a multi-step approach. These steps would serve as countermeasures to the conventional AML attacks described above. These steps are:

  • Simulation: Simulating attacks according to the possible attack strategies of the attacker can reveal loopholes. Identifying them through these simulations can prevent AML attacks from having an impact on the system.
  • Modelling: Estimating the capabilities and potential goals of attackers can provide an opportunity to prevent AML attacks. This is done by creating different models of the same ML system that can withstand these attacks. 
  • Impact evaluation: This type of defence evaluates the total impact an attacker can have over the system, thus ensuring preparation in the event of such an attack.
  • Information laundering: By modifying the information extracted by the attacker, this type of defence can render the attack pointless. When the extracted model contains purposely placed discrepancies, the attacker cannot recreate the stolen model.

Examples of AMLs

Various domains within our modern technologies are directly under the threat of Adversarial Machine Learning attacks. Since these technologies rely on pre-programmed ML systems, they could be exploited by people with malicious intentions. Some of the typical examples of AML attacks include:

1. Spam filtering: By purposely misspelt ‘bad’ words that identify spam or the addition of ‘good’ words that prevent identification.

2. Computer security: By hiding malware code within cookie data or mislead digital signatures to bypass security checks.

3. Biometrics: By faking biometric traits that are converted to digital information for identification purposes.

Conclusion

As the fields of Machine Learning and Artificial Intelligence continue to expand, their applications increase across sectors like automation, neural networks, and data security. Adversarial Machine Learning will always be significant for the ethical purpose of protecting ML systems and preserving their integrity. 

If you are interested to know more about machine learning, check out our Executive PG Programme in Machine Learning and AI program which is designed for working professionals and provide 30+ case studies & assignments, 25+ industry mentorship sessions, 5+ practical hands-on capstone projects, more than 450 hours of rigorous training & job placement assistance with top firms.

Frequently Asked Questions (FAQs)

1. Are Adversarial attacks malignant to cybersecurity?

Cybersecurity is a priority in the digital era. It is also fragile as it stands to withhold threats to its structure and function. If not protected, the IoT becomes vulnerable to theft of privacy, damage, and misuse. Adversarial attacks can occur when the parameters set by algorithms are evaded by misclassifying the incoming attack as input data. This is just one way of breaching machine learning systems. With an increasing number of adversarial attacks on machine learning algorithms, the safety, and efficacy of cybersecurity are compromised. Adversarial Machine Learning has been developed to tackle these threats.

2. How are Machine Learning Systems vulnerable?

Machine Learning Systems have to be robust in their structure to be reliable. There has been a swarm of malicious attacks on these systems in recent years, adversarial attacks breach the protective barriers of these systems. This happens through duplicating the model and changing the initial training data, deceiving the algorithm’s parameters, or retraining existing data to overlook incoming attacks. These adversarial attacks can breach ethical parameters and manipulate systems to operate unauthorised functions. Adversarial Machine Learning defences are used to identify invading malware attacks and restore the integrity of the system.

3. What strategies work for combating Adversarial attacks?

Adversarial attacks can range from infringement of data to manipulation of the entire system. They are pervasive and can spread across the system fast if the attacker has strong access to the system’s algorithm. An example is spam filtering, wherein the words are structured so that the algorithm cannot detect them as spam. Using Adversarial Machine Learning, programmers make measures against these attacks. They try to simulate attacks by visualising the attacker’s strategy, recognizing their pattern of invasion, and identifying loopholes. They use these insights to protect the system from further breaches. Testing the scope of the attacker’s skills and capability can help in modifying and safeguarding the system.