- Blog Categories
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Gini Index for Decision Trees
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Brand Manager Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Search Engine Optimization
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
Adversarial Machine Learning: Concepts, Types of Attacks, Strategies & Defenses
Updated on 25 November, 2022
5.77K+ views
• 9 min read
Table of Contents
The exponential progress of the previous decades has propelled modern technological advancements in today’s world. We are currently a part of the ongoing ‘Industry 4.0’, at the centre of which are technologies like AI and ML. This industrial revolution involves a global transition towards scientific research and innovation in technologies of neural networks, Machine Learning, and Artificial Intelligence, IoT, digitisation, and much more.
Best Machine Learning and AI Courses Online
They provide us with an array of benefits in sectors like e-commerce, manufacturing, sustainability, supply chain management, etc. The global market for AI/ML is expected to surpass USD 266.92 billion by 2027 and continues to be a preferred choice of career for graduates everywhere.
While the adaptation of these technologies is paving the way for the future, we are unprepared for events like Adversarial Machine Learning (AML) attacks. Machine Learning systems that are designed using coding languages like SML, OCaml, F#, etc., rely on programmable codes that are integrated throughout the system.
External AML attacks performed by experienced hackers pose a threat to the integrity and accuracy of these ML systems. Slight modifications to the input data set can cause the ML algorithm to misclassify the feed, and thus reduce the reliability of these systems.
In-demand Machine Learning Skills
Learn Machine Learning online from the World’s top Universities – Masters, Executive Post Graduate Programs, and Advanced Certificate Program in ML & AI to fast-track your career.
To equip yourself with the right resources for designing systems that can withstand such AML attacks, enrol in a PG Diploma in Machine Learning offered by upGrad and IIIT Bangalore.
Concepts Centred on Adversarial Machine Learning
Before we delve into the topic of AML, let us establish the definitions of some of the basic concepts of this domain:
- Artificial Intelligence refers to the ability of a computing system to perform logic, planning, problem-solving, simulation, or other kinds of tasks. An AI mimics human intelligence due to the information fed into it by using Machine Learning techniques.
- Machine Learning employs well-defined algorithms and statistical models for computer systems, which rely on performing tasks based on patterns and inferences. They are designed to execute these tasks without explicit instructions, and instead use predefined information from neural networks.
- Neural Networks are inspired by the biological functioning of a brain’s neurons, which are used for systematically programming the observational data into a Deep Learning model. This programmed data helps decipher, distinguish, and process input data into coded information to facilitate Deep Learning.
- Deep Learning uses multiple neural networks and ML techniques to process unstructured and raw input data into well-defined instructions. These instructions facilitate building multi-layered algorithms automatically through its representation/feature learning in an unsupervised manner.
- Adversarial Machine Learning is a unique ML technique that supplies deceptive inputs to cause malfunction within a Machine Learning model. Adversarial Machine Learning exploits vulnerabilities within the test data of the intrinsic ML algorithms that make up a neural network. An AML attack can compromise resultant outcomes and pose a direct threat to the usefulness of the ML system.
To learn the key concepts of ML, such as Adversarial Machine Learning, in-depth, enrol for the Masters of Science (M.Sc) in Machine Learning & AI from upGrad.
Types of AML Attacks
Adversarial Machine Learning attacks are categorised based on three types of methodologies.
They are:
1. Influence on Classifier
Machine Learning systems classify the input data based on a classifier. If an attacker can disrupt the classification phase by modifying the classifier itself, it can result in the ML system losing its credibility. Since these classifiers are integral to identifying data, tampering with the classification mechanism can reveal vulnerabilities that can be exploited by AMLs.
2. Security Violation
During the learning stages of an ML system, the programmer defines the data that is to be considered legitimate. If legitimate input data is improperly identified as malicious, or if malicious data is provided as input data during an AML attack, the rejection can be termed as a security violation.
3. Specificity
While specific targeted attacks allow specific intrusions/disruptions, indiscriminate attacks add to the randomness within the input data and create disruptions through decreased performance/failure to classify.
AML attacks and their categories are conceptually branched out of the Machine Learning domain. Due to the rising demand for ML systems, nearly 2.3 million job vacancies are available for ML and AI engineers, according to Gartner.[2] You can read more about how Machine Learning Engineering can be a rewarding career in 2021.
Adversarial Machine Learning Strategies
To further define the goal of the adversary, their prior knowledge of the system to be attacked and the level of possible manipulation of data components can assist in defining Adversarial Machine Learning strategies.
They are:
1. Evasion
ML algorithms identify and sort the input data set based on certain predefined conditions and calculated parameters. The evasion type of AML attack tends to evade these parameters used by algorithms to detect an attack. This is carried out by modifying the samples in a manner that can avoid detection and misclassify them as legitimate input.
They do not modify the algorithm but instead spoof the input by various methods so that it escapes the detection mechanism. For example, anti-spam filters that analyse the text of an email are evaded with the use of images that have embedded text of malware code/links.
2. Model extraction
Also known as ‘model stealing’; this type of AML attacks is carried out on ML systems to extract the initial training data used for building the system. These attacks are essentially capable of reconstructing the model of that Machine Learning system, which can compromise its efficacy. If the system holds confidential data, or if the nature of the ML itself is proprietary/sensitive, then the attacker could use it for their benefit or disrupt it.
3. Poisoning
This type of Adversarial Machine Learning attack involves disruption of the training data. Since ML systems are retrained using data collected during their operations, any contamination caused by injecting samples of malicious data can facilitate an AML attack. For poisoning data, an attacker needs access to the source code of that ML and retrains it to accept incorrect data, thus inhibiting the functioning of the system.
Proper knowledge of these Adversarial Machine Learning attack strategies can enable a programmer to avoid such attacks during operation. If you need hands-on training for designing ML systems that can withstand AML attacks, enrol for the Master’s in Machine Learning and AI offered by upGrad.
Specific Attack Types
Specific attack types that can target Deep Learning systems, along with conventional ML systems like linear regression and ‘support-vector machines’, can threaten the integrity of these systems. They are:
- Adversarial examples, such as FMCG, PGD, C&W, and patch attacks, cause the machine to misclassify, as they appear normal to the user. Specific ‘noise’ is used within the attack code to cause malfunction of the classifiers.
- Backdoor/Trojan attacks overload an ML system by bombarding it with irrelevant and self-replicating data that prevents it from optimum functioning. These Adversarial Machine Learning attacks are difficult to protect from, as they exploit the loopholes that exist within the machine.
- Model Inversion rewrites classifiers to function in an opposite manner to which they were originally intended. This inversion prevents the machine from performing its basic tasks due to the changes applied to its inherent learning model.
- Membership Inference Attacks (MIAs) can be applied to SL (supervised learning) and GANs (Generative Adversarial Networks). These attacks rely on the differences between the data sets of initial training data and external samples that pose a privacy threat. With access to the black-box and its data record, inference models can predict whether the sample was present in the training input or not.
To protect ML systems from these types of attacks, ML programmers and engineers are employed across all the major MNCs. Indian MNCs that host their R&D centres to encourage innovation in Machine Learning, offer salaries ranging from 15 to 20 Lakh INR per annum.[3] To learn more about this domain and secure a hefty salary as an ML engineer, enrol in an Advanced Certification in Machine Learning and Cloud hosted by upGrad and IIT Madras.
Defences Against AMLs
To defend against such Adversarial Machine Learning attacks, experts suggest that programmers rely on a multi-step approach. These steps would serve as countermeasures to the conventional AML attacks described above. These steps are:
- Simulation: Simulating attacks according to the possible attack strategies of the attacker can reveal loopholes. Identifying them through these simulations can prevent AML attacks from having an impact on the system.
- Modelling: Estimating the capabilities and potential goals of attackers can provide an opportunity to prevent AML attacks. This is done by creating different models of the same ML system that can withstand these attacks.
- Impact evaluation: This type of defence evaluates the total impact an attacker can have over the system, thus ensuring preparation in the event of such an attack.
- Information laundering: By modifying the information extracted by the attacker, this type of defence can render the attack pointless. When the extracted model contains purposely placed discrepancies, the attacker cannot recreate the stolen model.
Examples of AMLs
Various domains within our modern technologies are directly under the threat of Adversarial Machine Learning attacks. Since these technologies rely on pre-programmed ML systems, they could be exploited by people with malicious intentions. Some of the typical examples of AML attacks include:
1. Spam filtering: By purposely misspelt ‘bad’ words that identify spam or the addition of ‘good’ words that prevent identification.
2. Computer security: By hiding malware code within cookie data or mislead digital signatures to bypass security checks.
3. Biometrics: By faking biometric traits that are converted to digital information for identification purposes.
Popular AI and ML Blogs & Free Courses
Conclusion
As the fields of Machine Learning and Artificial Intelligence continue to expand, their applications increase across sectors like automation, neural networks, and data security. Adversarial Machine Learning will always be significant for the ethical purpose of protecting ML systems and preserving their integrity.
If you are interested to know more about machine learning, check out our Executive PG Programme in Machine Learning and AI program which is designed for working professionals and provide 30+ case studies & assignments, 25+ industry mentorship sessions, 5+ practical hands-on capstone projects, more than 450 hours of rigorous training & job placement assistance with top firms.
Frequently Asked Questions (FAQs)
1. Are Adversarial attacks malignant to cybersecurity?
Cybersecurity is a priority in the digital era. It is also fragile as it stands to withhold threats to its structure and function. If not protected, the IoT becomes vulnerable to theft of privacy, damage, and misuse. Adversarial attacks can occur when the parameters set by algorithms are evaded by misclassifying the incoming attack as input data. This is just one way of breaching machine learning systems. With an increasing number of adversarial attacks on machine learning algorithms, the safety, and efficacy of cybersecurity are compromised. Adversarial Machine Learning has been developed to tackle these threats.
2. How are Machine Learning Systems vulnerable?
Machine Learning Systems have to be robust in their structure to be reliable. There has been a swarm of malicious attacks on these systems in recent years, adversarial attacks breach the protective barriers of these systems. This happens through duplicating the model and changing the initial training data, deceiving the algorithm’s parameters, or retraining existing data to overlook incoming attacks. These adversarial attacks can breach ethical parameters and manipulate systems to operate unauthorised functions. Adversarial Machine Learning defences are used to identify invading malware attacks and restore the integrity of the system.
3. What strategies work for combating Adversarial attacks?
Adversarial attacks can range from infringement of data to manipulation of the entire system. They are pervasive and can spread across the system fast if the attacker has strong access to the system’s algorithm. An example is spam filtering, wherein the words are structured so that the algorithm cannot detect them as spam. Using Adversarial Machine Learning, programmers make measures against these attacks. They try to simulate attacks by visualising the attacker’s strategy, recognizing their pattern of invasion, and identifying loopholes. They use these insights to protect the system from further breaches. Testing the scope of the attacker’s skills and capability can help in modifying and safeguarding the system.
RELATED PROGRAMS