- Blog Categories
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Gini Index for Decision Trees
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Brand Manager Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Search Engine Optimization
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
Anomoly Detection With Machine Learning: What You Need To Know?
Updated on 21 November, 2024
5.79K+ views
• 8 min read
Table of Contents
The human brain loves to see something amiss; our brains are programmed to just look for the irregularities g. But, anomalies can be the most significant threats that enterprises may encounter when it comes to cybersecurity.
Best Machine Learning and AI Courses Online
Let’s take an example to understand what an anomaly can look like for digital space?
The tweet- “Shoplifters, beware. Japan’s new AI software
@vaak_inc
says it can spot potential thieves, even before they steal #リテールテック.”
https://twitter.com/QuickTake/status/1102751999215521794
As per this tweet, Japan has developed an Artificial Intelligence(AI)-based software that analyzes human behavioral patterns and detects anomalies as per the data. These anomalies lead to the detection of the customer’s suspicious behavior, and a shop assistant will ask them if help is needed. If the shoplifter is approached, it has been noticed in most cases that they would simply walk away.
Similarly, there can be many different types of anomalies like bulk transactions, several login attempts, or even unusual network traffic. In this article, we study how machine learning can help identify anomalies? But, before we do that, let’s understand what an anomaly is in terms of cybersecurity?
Join the Artificial Intelligence Course online from the World’s top Universities – Masters, Executive Post Graduate Programs, and Advanced Certificate Program in ML & AI to fast-track your career.
What is an Anomaly?
Anomalies are often a pattern that is different from standard behavior in a data set. Here is a graphical representation of the data sets. N1 and N2 regions represent standard patterns of data set clusters, while other objects can be deemed anomalies.
The differentiation between novel patterns or good patterns and anomalies or malicious data sets is the most crucial challenge in modern cybersecurity systems. An anomaly can help attackers leak essential data and even steal user information for manipulations. We have seen many phishing attacks, cyber frauds, identity thefts, and data leaks over the years due to the introduction of malicious or negative patterns in a network or system.
In July 2020, many celebrities and politicians’ Twitter accounts got hacked. More than 130 Twitter accounts were held hostage by hackers, including Joe Biden, the 46th United States President, Barack Obama, Elon Musk, Bill Gates, Kanye West, Michael Bloomberg, and Apple.
Types of Anomalies
Anomalies can manifest in various ways, and having a comprehensive understanding of their nature is crucial for developing effective anomoly detection machine learning algorithms. The following are the key types of anomalies that are commonly encountered in anomoly detection:
- Point Anomalies: Point anomalies refer to individual instances or data points that significantly deviate from the normal behaviour of the dataset. These anomalies can be identified by examining the values or features of individual data points and comparing them to the expected range or distribution. For example, in a network traffic dataset, a point anomaly could be a single connection with an unusually large amount of data transfer compared to the average connections.
- Contextual Anomalies: Contextual anomalies occur when the deviation from normal behaviour is dependent on the context or specific conditions. These anomalies are detected by considering the contextual information surrounding the data points. For instance, a transaction that is usually considered normal may become anomalous if it occurs at an unusual time or location, given the user’s historical behaviour.
- Collective Anomalies: Collective anomalies, also known as group anomalies, involve a collection of data points that exhibit anomalous behaviour when considered as a group. These anomalies are not apparent when analyzing individual data points in isolation but become evident when examining the relationships or interactions between them. An example of collective anomalies is a sudden increase in the number of failed login attempts across multiple user accounts, indicating a potential coordinated attack.
- Temporal Anomalies: Temporal anomalies occur when abnormal behaviour is related to time and sequential patterns. These anomalies are detected by analyzing the time series data and identifying patterns that deviate from the expected temporal order. For instance, in a system log dataset, a temporal anomaly could be a sequence of events that occur in an unusual order or with unexpected time intervals.
- Statistical Anomalies: Statistical anomalies are identified based on statistical properties and distributions of the data. These anomalies are detected by comparing the statistical characteristics of data points or features to the expected distribution. For example, if the distribution of transaction amounts in a financial dataset follows a normal distribution, any transaction falling significantly outside the expected range may be considered a statistical anomaly.
Common Challenges in Anomaly Detection
Anomaly detection is a complex task that comes with its fair share of challenges. Overcoming these challenges is vital to ensuring accurate and reliable anomaly detection systems. Here are some of the common challenges faced in anomaly detection:
- Imbalanced Datasets: Anomaly detection often deals with imbalanced datasets, where normal instances vastly outnumber the anomalies. This creates a challenge as standard machine learning algorithms tend to be biased towards the majority class, leading to poor detection performance for the minority class.
- Lack of Labeled Anomaly Data: Obtaining labelled anomaly data for training supervised anomaly detection models can be challenging. Anomalies are often rare and may require extensive domain expertise to identify and label accurately. The limited availability of labelled data can hinder the development of effective anomaly detection models.
- Concept Drift and Evolving Attacks: Anomaly detection systems face the challenge of adapting to evolving attack techniques. Attackers continuously modify their strategies, making it necessary to update detection models to detect new types of anomalies and avoid false negatives caused by concept drift.
- High False Positive Rates: Anomaly detection machine learning algorithms may produce a high number of false positives, flagging normal instances as anomalies. This can lead to alert fatigue and inefficiency in cybersecurity systems, as security analysts spend valuable time investigating false alarms.
- Interpretability and Explainability: Machine learning algorithms used in anomaly detection, such as deep neural networks, can be highly complex and difficult to interpret. Understanding the reasons behind an anomaly detection decision and providing explanations to stakeholders is crucial, especially in critical domains such as finance and healthcare.
In-demand Machine Learning Skills
So, you can understand the importance of anomaly detection in the digital age of BigData. Now that we have a basic understanding of the anomalies, let’s discover some legacy methods and integrations of AI in anomaly detection.
Intrusion Detection System
It is a software tool that helps detect unauthorized access to any network or system; this tool is a great way to detect all types of malicious usage of networks. It has capabilities to help you detect service attacks, data-driven attacks on any software, and even mobile applications.
Here, you can see the wireframe infrastructure of a generalized intrusion detection system. There are dedicated security officers at the helm of anomaly detection. The software collects all the network packets (Any network data transmitted across devices is done in packets). Next, it analyzes the network flow for the detection of anomalies among novel patterns.
Machine Learning algorithms can help create more robust intrusion detection systems; we can use machine learning algorithms to analyze network packets and detect anomalies. The algorithms will use novel patterns as a referendum.
Signature Technique
A signature technique is one of the most popular methods to detect anomalies. It leverages signatures of malicious objects stored in the repositories to compare with network patterns. The system analyzes the network patterns and tries to find malicious signatures. Although it is an excellent technique to detect anomalies, unknown threats, and attacks go undetected.
Read: Scope of Cyber Security as a career option
Real-Time Anomaly Detection With ML
Machine Learning algorithms can help with real-time anomaly detection. Google cloud uses this method to create an anomaly detection pipeline, where 150 Megabytes of data is ingested in a 10 minutes window.
The first step towards real-time anomaly detection in this method is to create a synthetic data flow; this helps create a map of triggers for ingesting or aggregation of anomalies in the flow. Whether it’s your wifi at home or an enterprise network at the office, every network has several subnets and subscriber IDs; this method leverages subnets and subscriber ID data.
The only problem faced here is subscriber ID data usage, as it violates data regulations. As the subscriber IDs contain PII or Personally identifiable information, it can be revealed to the cloud providers during the ingestion or aggregation of data. For these purposes, cloud services use deterministic encryptions. They use crypto decryptions to decrypt the data that does not detect PII.
As shown here, it is better to use the BigQuery algorithm to analyze large volumes of data as the algorithm can be trained to analyze data in terms of clusters. Data clustering can help partition the different sets of information like subscriber IDs and subnets according to days, dates, or other filters. So, one can quickly help clustering algorithms to learn from data patterns through filtered information.
The last step is to detect outliers or anomalies among clustered data. An algorithm will need normalized data for the detection of outliers. So, once the data normalization is conducted, the ML algorithm will identify a centroid in each cluster as a reference and measure the center’s distance to the input vector.
The distance is measured in terms of standard deviations from its novel path and is deemed an outlier accordingly.
Also Read: Artificial Intelligence in Cyber Security
Anomaly Detection as a Career
With a significantly soaring demand for cybersecurity professionals coupled with the lucrative salaries they offer, a cybersecurity career is becoming one of the most sought-after career options now. If you want to pursue this profession, upGrad and IIIT-B can help you with a Advanced Certificate Programme in Cyber Security . The course offers specialization in application security, cryptography, data secrecy, and network security.
Popular AI and ML Blogs & Free Courses
Conclusion
Advanced technologies like Artificial Intelligence and Machine Learning algorithms are useful in fighting potential cyber threats, and it is a blossoming career path. So, don’t just rely on age-old encryptions or anti-virus software when you can have real-time anomaly detection systems with advanced AI algorithms. These methods make your business more reliable and secure with an AI-based anomaly detection system.
RELATED PROGRAMS