- Blog Categories
- Software Development
- Data Science
- AI/ML
- Marketing
- General
- MBA
- Management
- Legal
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- Software Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Explore Skills
- Management Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
Apache Hive Architecture & Commands: Modes, Characteristics & Applications
Updated on 31 October, 2022
6.15K+ views
• 10 min read
Table of Contents
What is Hive?
The Apache hive is an open-source data warehousing tool developed by Facebook for distributed processing and data analytics. It is developed on top of the Hadoop Distributed File System (HDFS). A mechanism for projecting structure onto the data in Hadoop is provided by Hive. A SQL-like language called HiveQL (HQL) is used to query that data. There is a similarity between the tables in Hive and tables in a relational database. Hive queries can be easily written by whoever is familiar with SQL.
A few features of Hive are:
- Storage of schema information into a database and the processed data into HDFS.
- Designed for OLAP.
- The querying language is HiveQL or HQL, which is similar to SQL.
- It is fast, familiar, scalable, and extensible.
Uses of Hive
- It is the Apache Hive distributed storage.
- Tools are provided that enable the users to easily extract, transform, and load data.
- A variety of data formats are offered for providing the structure.
- Files stored in Hadoop Distributed File System (HDFS) can be accessed by Hive.
Commands of Hive
The hive commands are:
1. Data Definition Language (DDL): The tables and other objects in the database are built and modified through these commands.
- CREATE: It is used to create a table or Database.
- SHOW: It is used to show Database, Table, Properties, etc.
- ALTER: It is used to make changes to the existing table.
- DESCRIBE: It describes the table columns.
- TRUNCATE: Used to permanently truncate and delete the rows of tables.
- DELETE: Deletes the table data, but can be restored.
2. Data Manipulation Language (DML): used to retrieve, store, modify, delete, insert, and update data in the database.
- Syntax for LOAD, INSERT Statements
LOAD data <LOCAL> inpath <file path> into table [tablename]
- After loading of the data the data manipulation commands are used to retrieve the data.
- Count aggregate function is used to count the total number of the records in a table.
- “create external” keyword is used to create a table and provides a location where the table will be created. An EXTERNAL table points to any HDFS location for its storage.
- Insert commands are used to load the data Hive table. The “insert overwrite” is used to overwrite the existing data and “insert into” is used to append the data into an existing data.
- A table is divided into partitions by the “partitioned by” command and divided into buckets by “clustered by” command.
- Insertion of data throws errors as the dynamic partition is not enabled. Therefore, the following parameters are to be set in the Hive shell.
set hive.exec.dynamic.partition=true;
To enable dynamic partitions, by default, it’s false
set hive.exec.dynamic.partition.mode=nonstrict;
- ‘Drop Table’ command deletes the data and metadata for a table
- Aggregation: Syntax:
Select count (DISTINCT category) from tablename;
The command will count different categories of ‘cate’ tables.
- Grouping: Syntax:
Select category, sum( amount) from txt records group by category
The result set will be grouped into one or more columns.
- Join Operation: perform to combine fields from two tables by using values common to each column.
- Left outer join: For table A and B, left outer join is to contain all records of the “left” table (A), even if the join-condition does not find any matching record in the “right” table (B).
- Right Outer Join: Every row from the “right” table (B) will appear in the joined table at least once.
- Full join: The joined table will contain all records from both tables The joined table will contain all records from both tables.
In-Demand Software Development Skills
Hive Architecture
The apache hive architecture is shown in Figure 1.
List of Major Components
The major components of the hive architecture are:
1. Hive client
Different applications written in languages like Java, Python, C++, etc. are communicated through the use of different drivers provided by Hive. It can be written in any language as per choice. The Clients and servers in turn communicate with the Hive server in the Hive services.
Mostly they are categorized into three types:
- Thrift Client: It is based on Apache Thrift to serve a request from a Thrift client. The Thrift client will be used for communication for the Thrift-based applications.
- JDBC Client: JDBC is provided for Java-related applications. Java applications are connected to the Hive using the JDBC driver. It further uses the Thrift to communicate with the Hive server.
- ODBC Client: The applications based on the ODBC protocol are allowed to connect to the Hive through the ODBC drivers. Similar to JDBC, it uses Thrift to communicate to the Hive server.
2. Hive Services
Hive services provide means for the interactions of Hive with the Clients. Any query-related operations that have to be performed by the Client will have to be communicated through the Hire services. For Data Definition Language (DDL) operations, CLI acts as the Hive service.
All the drivers have to communicate with the Hive server and then to the main driver in the Hive services. Drivers in the Hive services represent the main driver which communicates with the Client specific applications and all types of JDBC, ODBC, etc. The requests from different applications are processed by the driver to the metastore and field systems which will be further processed.
Services offered by Hive are:
- Beeline: The Beeline is a command shell where a user can submit its queries to the system. It is supported by HiveServer2. It is a JDBC client that is based on SQLLINE CLI.
- Hive Server 2: Clients are allowed to execute the queries against the hive. A successor of HiveServer1, it allows the execution of multiple queries from multiple clients. It provides the best support for open API clients like JDBC and ODBC.
- Hive Driver: The user submits the HiveQL statements to the Hive driver through the command shell. It sends the query to the compiler and creates session handles for the query.
- Hive compiler: The Hive compiler is used for passing the query. Using the metadata stored in the metastore, the Hive compiler performs semantic analysis and type checking on the different query blocks and expressions. An execution plan is then generated by the compiler which is the DAG (Directed Acyclic Graph). Each stage of the DAG is a metadata operation, operation on HDFS, or is a map/reduce job.
- Optimizer: The main role of the optimizer is to perform transformation operations on the execution plan. It increases efficiency and scalability by splitting the tasks.
- Execution Engine: After the completion of the compilation and optimization steps, it is the role of the execution engine that executes the execution plan created by the compiler. The plan is executed using Hadoop in order of their dependencies.
- Metastore: Metastore is generally a relational database that stores the metadata information related to the structure of the tables and partitions. It is a central repository that also includes storing information of column and column types. Information related to serializer and deserializer, are also stored in Metastore which is required for reading/write operations along with HDFS files which store data. A Thrift interface is provided by Metastore for querying and manipulating Hive metadata.
Metastore can be configured in two modes:
- Remote: This mode is useful for non-Java applications and in the remote mode the metastore is a Thrift service.
- Embedded: In this mode, the client can directly interact with the metastore through the JDBC.
- HCatalog: The table and storage management layer for Hadoop is the HCatalog. Different data processing tools for reading and writing data on the grid are available like Pig, MapReduce, etc. Built on the top of Hive metastore, the tabular data of Hive metastore is exposed to other data processing tools.
- WebHCat: WebHCat is an HTTP interface and REST API for HCatalog. It performs Hive metadata operations and offers a service of running Hadoop MapReduce (or YARN), Pig, Hive jobs.
Explore Our Software Development Free Courses
3. Processing and Resource Management
The execution of the queries is carried out by an internal MapReduce framework.
The MapReduce framework is a software framework for processing large amounts of data on large clusters of commodity hardware. The data is split into chunks and then processed by map-reduce tasks.
4. Distributed Storage
The Hive services communicate with the Hive storage for performing the following actions:
- The Hive “Meta storage database” holds the metadata information of tables created in Hive.
- The Hadoop cluster on HDFS will store Query results and the data loaded onto the tables.
Different Modes of Hive
Depending on the size of the data, Hive can operate in two modes.
1. Local Mode
The local mode of Hive is used when
- The Hadoop installed has one data node and is installed under pseudo mode.
- The data size of a single local machine is smaller.
- Fast processing on local machines due to the smaller data sets present.
2. Map reduce mode
The Map reduce mode of Hive is used when
- Hadoop has multiple data nodes with distributed data across the different nodes.
- The data size is larger and parallel execution of the query is required.
- Large data sets can be processed with better performance.
Characteristics of Hive
- Data is loaded into the tables after the tables and the databases are created.
- Only structured data stored in tables can be managed and queried by Hive.
- The Hive framework has features of optimization and usability while dealing with the structured data which is not present in Map Reduce.
- For ease of use, Hive SQL-inspired language is a simpler approach compared to the complex programming language of Map Reduce. Familiar concepts of tables, rows, columns, etc. are used in Hive.
- For increasing the performance of the queries, Hive can partition the data using a directory structure.
- Hive contains an important component called the “Metastore” which resides in a relational database and stores schema information. Two methods can be used to interact with Hive: Web GUI and Java Database Connectivity (JDBC) interface.
- A command-line interface (CLI) is used for most of the interactions. The CLI is used for writing the Hive queries using the Hive Query Language (HQL).
- The HQL syntax is similar to that of the SQL syntax.
- Four file formats are supported by Hive; TEXTFILE, SEQUENCEFILE, ORC, and RCFILE (Record Columnar File).
Explore our Popular Software Engineering Courses
Conclusion
Apache Hive is an open-source data warehousing tool consisting of major components like Hive clients, Hive services, Processing framework and Resource Management, and Distributed Storage.
It is built on top of the Hadoop ecosystem for the processing of structures and semi-structured data. The user interface provided by Hive enables the user to submit their queries in Hive Query Language (HQL). This is passed to the compiler for generating an execution plan. The plan is finally executed by the execution engine.
If you are interested to know more about Big Data, check out our Advanced Certificate Programme in Big Data from IIIT Bangalore.
Check our other Software Engineering Courses at upGrad.
Frequently Asked Questions (FAQs)
1. What are the primary differences between Apache Hive and Apache HBase?
Apache Hive uses SQL query functions and is based on a distributed data warehouse system. Apache HBase, on the other hand, doesn’t need SQL to manage its distributed data and offers real-time and consistent access to petabytes of data. Secondly, Apache Hive has a defined schema for all the tables that it uses, whereas Apache HBase is schema-free. In terms of data, Apache Hive has extensive support for supported and unsupported data but Apache HBase shares its support only for unstructured data. Apache Hive uses Apache Tez or MapReduce for batch processing, while Apache HBase follows real-time processing.
2. What is the real-time use case of Hive?
Airbnb has over 2.9 million hosts listed with them that interlink people by offering them designated places to live. Moreover, it supports more than 800k night stays. Airbnb runs Apache Hive by using Amazon EMR on an S3 data lake. When the hive is run on EMR clusters, Airbnb analysts use SQL queries on the piece of data that is present in the S3 data lake. Therefore, Airbnb can now accommodate cost attribution since its expenses are now reduced. Furthermore, there is a significant jump in Apache Spark jobs by three times their original speed.
3. What are some key benefits of working with Apache Hive?
If you are to work with transactions, reports, queries, and data, Apache Hive shares its benefits. Apache Hive is also very easy to use as there is very minimal effort required to understand SQL queries. Next, it is scalable, cost-effective, and flexible which makes storing tons of data convenient. Moreover, all of Apache’s data is stored in HDFS which offers an upper hand over traditional databases. Another benefit is its exceptional capacity to execute more than 100,000 queries/hour providing support to datasets. Also, insert-only tables in Apache Hive have a very low overhead since no renaming is needed.