- Blog Categories
- Software Development
- Data Science
- AI/ML
- Marketing
- General
- MBA
- Management
- Legal
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Gini Index for Decision Trees
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Brand Manager Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- Software Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Explore Skills
- Management Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Search Engine Optimization
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
Apache Spark Streaming Tutorial For Beginners: Working, Architecture & Features
Updated on 24 November, 2022
8.24K+ views
• 13 min read
Table of Contents
We are currently living in a world where a vast amount of data is generated every second at a rapid rate. This data can provide meaningful and useful results if it is accurately analysed. It can also offer solutions to many industries at the right time.
These are very helpful in the industries such as in Travel Services, Retail, Media, Finance and Health Care. Many other top companies have adopted Data Analysis such as Tracking of Customer interaction with different kinds of products done by Amazon on its platform or Viewers receiving personalized recommendations at real-time, which is provided by Netflix.
It can be used by any business which uses a large amount of data, and they can analyse it for their benefit to improve the overall process in their business and to increase customer satisfaction and user experiences. Better User experiences and customer satisfaction provides benefit to the organization, in the long run, to expand the business and make a profit.
What is Streaming?
Streaming of data is a method in which information is transferred as a continuous and a steady stream. As the Internet is growing, technologies of streaming are also increasing.
What is Spark Streaming?
When data continuously arrives in a sequence of unbound, then it is called a data stream. Input data is flowing steadily, and it is divided by streaming. Further processing of data is done after it is divided into discrete units. The analysing of data and processing data at low latency is called stream processing.
In 2013, Apache Spark was added with Spark Streaming. There are many sources from which the Data ingestion can happen such as TCP Sockets, Amazon Kinesis, Apache Flume and Kafka. With the help of sophisticated algorithms, processing of data is done. A high-level function such as window, join, reduce and map are used to express the processing. Live Dashboards, Databases and file systems are used to push the processed data to file systems.
Working of Stream
Following are the internal working. Spark streaming divides the live input data streams into batches. Spark Engine is used to process these batches to generate final stream batches as a result.
Data in the stream is divided into small batches and is represented by Apache Spark Discretized Stream (Spark DStream). Spark RDDs is used to build DStreams, and this is the core data abstraction of Spark. Any components of Apache Spark such as Spark SQL and Spark MLib can be easily integrated with the Spark Streaming seamlessly.
Spark Streaming helps in scaling the live data streams. It is one of the extensions of the core Spark API. It also enables processing of fault-tolerant stream and high-throughput. The use of Spark Streaming does Real-time processing and streaming of live data. Major Top Companies in the world are using the service of Spark Streaming such as Pinterest, Netflix and Uber.
Spark Streaming also provides an analysis of data in real-time. Live and Fast processing of data are performed on the single platform of Spark Streaming.
Explore our Popular Software Engineering Courses
Also read Apache Spark Architecture
Why Spark Streaming?
Spark Streaming can be used to stream real-time data from different sources, such as Facebook, Stock Market, and Geographical Systems, and conduct powerful analytics to encourage businesses.
There are five significant aspects of Spark Streaming which makes it so unique, and they are:
1. Integration
Advanced Libraries like graph processing, machine learning, SQL can be easily integrated with it.
2. Combination
The data which is getting streamed can be done in conjunction with interactive queries and also static datasets.
3. Load Balancing
Spark Streaming has a perfect balancing of load, which makes it very special.
4. Resource usage
Spark Streaming use the available resource in a very optimum way.
5. Recovery from stragglers and failures
Spark Streaming can quickly recover from any kinds of failures or straggler.
In-Demand Software Development Skills
Need for Streaming in Apache Spark
Continuous operator model is used while designing the system for processing streams traditionally to process the data. The working of the system is as follows:
- Data sources are used to stream the data. The different kinds of Data sources are IoT device, system telemetry data, live logs and many more. These streaming data are ingested into data ingestion systems such as Amazon Kinesis, Apache Kafka and many more.
- On a cluster, parallel processing is done on the data.
- Downstream systems such as Kafka, Cassandra, HBase are used to pass the results.
A set of worker nodes runs some continuous operators. The processing of records of streamed data is done one at a time. The documents are then forwarded to the next operators in the pipeline.
Source Operators are used to receiving Data from ingestion systems. Sink Operators are used to giving output to the downstream system.
Some operators are continuous. These are a natural and straightforward model. When it comes to Analytics of complex data at real-time, which is done at a large scale, traditional architecture faces some challenges in the modern world, and they are:
Fast failure recovery
In today’s system failures are quickly accompanied and accommodated by recovering lost information by computing the missing info in parallel nodes. Thus, it makes the recovery even faster compared to traditional systems.
Load balancer
Load balancer helps to allocate resource and data among the node in a more efficient manner so that no resource is waiting or doing nothing but the data is evenly distributed throughout the nodes.
Unification of Interactive, Batch and Streaming Workloads
One can also interact with streaming data by making queries to the streaming data. It can also be combined with static datasets. One cannot do ad-hoc queries using new operators because it is not designed for continuous operators. Interactive, streaming and batch queries can be combined by using a single-engine.
SQL queries and analytics with ML
Developing systems with common database command made developer life easy to work in collaboration with other systems. The community widely accepts SQL queries. Where the system provides module and libraries for machine learning that can be used for advance analytical purpose.
Spark Streaming Overview
Spark Streaming uses a set of RDDs which is used to process the real-time data. Hence, Spark Streaming is generally used commonly for treating real-time data stream. Spark Streaming provides fault-tolerant and high throughput processing of live streams of data. It is an extra feature that comes with core spark API.
Spark Streaming Features
- Business Analysis: With the use of Spark Streaming, one can also learn the behaviour of the audience. These learning can later be used in the decision-making of businesses.
- Integration: Real-time and Batch processing is integrated with Spark
- Fault Tolerance – The unique ability of the Spark is that it can recover from the failure efficiently.
- Speed: Low Latency is achieved by Spark
- Scaling: Nodes can be scaled easily up to hundreds by Spark.
Spark Streaming Fundamentals
1. Streaming Context
In Spark the data stream is consumed and managed by Streaming Context. It creates an object of Receiver which is produced by registering an Input streaming. Thus it is the main Spark functionality that becomes a critical entry point to the system as it provides many contexts that provide a default workflow for different sources like Akka Actor, Twitter and ZeroMQ.
Read: Role of Apache Spark in Big Data & Why it’s unique
A spark context object represents the connection with a spark cluster. Where the Spark Streaming object is created by a StreamingContext object, accumulators, RDDs and broadcast variables can also be created a SparkContex object.
2. Checkpoints, Broadcast Variables and Accumulators
Checkpoints
Checkpoint works similar to Checkpoints which stores the state of the systems the same as in the games. Where, in this case, Checkpoints helps in reducing the loss of resources and make the system more resilient to system breakdown. A checkpoint methodology is a better way to keep track of and save the states of the system so that at the time of recovery, it can be easily pulled back.
Explore Our Software Development Free Courses
Broadcast Variables
Instead of providing the complete copy of tasks to the network Nodes, it always catches a read-only variable which is responsible for acknowledging the nodes of different task present and thus reducing transfer and computation cost by individual nodes. So it can provide a significant input set more efficiently. It also uses advanced algorithms to distribute the broadcast variable to different nodes in the network; thus, the communication cost is reduced.
Accumulators
Accumulators are variables which can be customized for different purposes. But there also exist already defined Accumulators like counter and sum Accumulators. There is also tracking Accumulators that keeps track of each node, and some extra features can also be added into it. Numeric Accumulators support many digital functions which are also supported by Spark. A custom-defined Accumulators can also be created demanded by the user.
DStream
DStream means Discretized Stream. Spark Streaming offers the necessary abstraction, which is called Discretized Stream (DStream). DStream is a data which streams continuously. From a source of data, DStream is received. It may also be obtained from a stream of processed data. Transformation of input stream generates processed data stream.
After a specified interval, data is contained in an RDD. Endless series of RDDs represents a DStream.
Caching
Developers can use DStream to cache the stream’s data in memory. This is useful if the data is computed multiple times in the DStream. It can be achieved by using the persist() method on a DStream.
Duplication of data is done to ensure the safety of having a resilient system that can resist and failure in the system thus having an ability to tolerate faults in the system (such as Kafka, Sockets, Flume etc.)
Spark Streaming Advantage & Architecture
Processing of one data stream at a time can be cumbersome at times; hence Spark Streaming discretize the data into small sub batches which are easily manageable. That’s because Spark workers get buffers of data in parallel accepted by Spark Streaming receiver. And hence the whole system runs the batches in parallel and then accumulates the final results. Then these short tasks are processed in batches by Spark engine, and the results are provided to other systems.
In Spark Streaming architecture, the computation is not statically allocated and loaded to a node but based on the data locality and availability of the resources. It is thus reducing loading time as compared to previous traditional systems. Hence the use of data locality principle, it is also easier for fault detection and its recovery.
Data nodes in Spark are usually represented by RDD that is Resilient Distribution Dataset.
Goals of Spark Streaming
Following are the Goals achieved by Spark architecture.
1. Dynamic load balancing
This is one of the essential features of Spark Streaming where data streams are dynamically allocated by the load balancer, which is responsible for allocation data and computation of resources using specific rules defined in it. The main goal of load balancing is to balance the workload efficiently across the workers and put everything in a parallel way such that there is no wastage of resources available. And also responsible for dynamically allocating resource to the worker nodes in the system.
2. Failure and Recovery
As in the traditional system, when there occurs an operation failure, the whole system has to recompute that part to get the lost information back. But the problem comes when one node is handling all this recovery and making the entire system to wait for its completion. Whereas in Spark the lost information is computed by other free nodes and bring back the system to track without any extra waiting like in the traditional methods.
And also the failed task is distributed evenly on all the nodes in the system to recompute and bring back it from failure faster than the traditional method.
3. Batches and Interactive query
Set of RDDs in Spark are called to be DStream in Spark that provides a relation between Streaming workloads and batches. These batches are stored in Spark’s memory, which provides an efficient way to query the data present in it.
The best part of Spark is that it includes a wide variety of libraries that can be used when required by the spark system. Few names of the libraries are MLlib for machine learning, SQL for data query, GraphX and Data Frame whereas Dataframe and questions can be converted to equivalent SQL statements by DStreams.
4. Performance
As the spark system uses parallel distributions of the task that improve its throughput capacity and thus leveraging the sparks engine that capable of achieving low latency as low as up to few 100 milliseconds.
How do Spark Streaming works?
The data in the stream is divided into small batches which are called DStreams in the Spark Streaming. It is a sequence of RDDs internally. Spark APIs are used by RDDS to process the data and shipments are returned as a result. The API of Spark Streaming is available in Python, Java and Scala. Many features are lacking in the recently introduced Python API in Spark 1.2.
Stateful computations are called a state that is maintained by the Spark Streaming based on the incoming data in the stream. The data that flows in the stream is processed within a time frame. This time frame is to be specified by the developer, and it is to be allowed by Spark Streaming. The time window is the time frame within which the work should be completed. The time window is updated within a time interval which is also known as the sliding interval in the window.
Spark Streaming Sources
Receiver object which is related with an input DStream, stores data received, in Sparks Memory for processing.
Built-in streaming has two categories:
1. Basic source
Sources available in Streaming API, e.g. Socket Connection and File System.
2. Advanced source
Advanced level of sources is Kinesis, Flume & Kafka etc.
Streaming Operations
There are two types of operations which are supported by Spark RDDS, and they are:-
1. Output Operations in Apache Spark
Output Operations are used to push out the data of the DStream into an external system such as a file system or a database. Output Operations allows transformed data to be consumed by the external systems. All the DStreams Transformation are actually executed by the triggering, which is done by the external systems.
These are the current Output operations:
foreachRDD(func), [suffix]), saveAsHadoopFiles(prefix, [suffix]), saveAsObjectFiles(prefix, [suffix])”prefix-TIME_IN_MS[.suffix]”, saveAsTextFiles(prefix, print()
RDDs lazily execute output Operations. Inside the DStream Operations of Output, RDD Actions are taken forcefully to be processed of the received data. The execution of Output Operations is done one-at-a-time. Spark applications define the order of the performance of the output operations.
2. Spark Transformation
Spark transformation also changes the data from the DStream as RDDs support it in Spark. Just as Spark RDD’s, many alterations are supported by DStream.
Following are the most common Transformation operations:
Window(), updateStateByKey(), transform(), [numTasks]), cogroup(otherStream, [numTasks]), join(otherStream, reduceByKey(func, [numTasks]), countByValue(), reduce(), union(otherStream), count(), repartition(numPartitions), filter(), flatMap(), map().
Conclusion
In today’s data-driven world tools to store and analyse data has proved to be the key factor in business analytics and growth. Big Data and the associated tools and technologies have proven to be on a rising demand. As such Apache Spark has a great market and offers great features to customers and businesses.
Learn Software Development Courses online from the World’s top Universities. Earn Executive PG Programs, Advanced Certificate Programs or Masters Programs to fast-track your career.
Frequently Asked Questions (FAQs)
1. What benefits does Apache Storm come with?
Apache Storm is a distributed, open-source platform that helps in Big Data processing in real-time. It comes with several outstanding benefits. Apache Storm is not simply scalable and fault-tolerant but is also highly reliable in terms of its performance and extends support for almost every programming language. It processes data streams at real-time speed, i.e., significantly fast, which indicates its incredible power in processing high volumes of data. And it keeps maintaining the same level of performance even when the data load keeps increasing fast. Apache Storm also comes with operational intelligence; it is user-friendly, tough, and suitable for use by both big and small organisations across industries.
2. What benefits does Apache Spark come with?
Apache Spark is an extremely popular analytics engine built for Big Data and machine learning. Since it was launched, Apache Spark has been readily employed by companies across different industries. There are varied advantages offered by this unified analytics engine that speaks for its demand. Firstly, it provides tremendous speed in large-scale processing data and is at least 100 times speedier than Hadoop. Moreover, Apache Spark is available as a unified software package containing graph processing capabilities along with high-level libraries, SQL query support as well as data streaming features, which are of great help to developers. Apache Spark comes in a user-friendly design too.
3. Is Apache Spark a programming language?
Apache Spark is not a programming language. It is an engine that helps execute data engineering, machine learning, and data science on clusters comprising single nodes or machines. So in other words, Apache Spark is a general-purpose scalable computing system designed for clusters. It performs at high speed and provides high-level API support for programming languages such as Scala, Java, R, and Python. Spark is built using Scala, which is the primary computer language used for interacting with its core engine. It is designed for processing batch or streaming data and SQL queries and supports scalability to thousands of machines.