Explore Courses
Liverpool Business SchoolLiverpool Business SchoolMBA by Liverpool Business School
  • 18 Months
Bestseller
Golden Gate UniversityGolden Gate UniversityMBA (Master of Business Administration)
  • 15 Months
Popular
O.P.Jindal Global UniversityO.P.Jindal Global UniversityMaster of Business Administration (MBA)
  • 12 Months
New
Birla Institute of Management Technology Birla Institute of Management Technology Post Graduate Diploma in Management (BIMTECH)
  • 24 Months
Liverpool John Moores UniversityLiverpool John Moores UniversityMS in Data Science
  • 18 Months
Popular
IIIT BangaloreIIIT BangalorePost Graduate Programme in Data Science & AI (Executive)
  • 12 Months
Bestseller
Golden Gate UniversityGolden Gate UniversityDBA in Emerging Technologies with concentration in Generative AI
  • 3 Years
upGradupGradData Science Bootcamp with AI
  • 6 Months
New
University of MarylandIIIT BangalorePost Graduate Certificate in Data Science & AI (Executive)
  • 8-8.5 Months
upGradupGradData Science Bootcamp with AI
  • 6 months
Popular
upGrad KnowledgeHutupGrad KnowledgeHutData Engineer Bootcamp
  • Self-Paced
upGradupGradCertificate Course in Business Analytics & Consulting in association with PwC India
  • 06 Months
OP Jindal Global UniversityOP Jindal Global UniversityMaster of Design in User Experience Design
  • 12 Months
Popular
WoolfWoolfMaster of Science in Computer Science
  • 18 Months
New
Jindal Global UniversityJindal Global UniversityMaster of Design in User Experience
  • 12 Months
New
Rushford, GenevaRushford Business SchoolDBA Doctorate in Technology (Computer Science)
  • 36 Months
IIIT BangaloreIIIT BangaloreCloud Computing and DevOps Program (Executive)
  • 8 Months
New
upGrad KnowledgeHutupGrad KnowledgeHutAWS Solutions Architect Certification
  • 32 Hours
upGradupGradFull Stack Software Development Bootcamp
  • 6 Months
Popular
upGradupGradUI/UX Bootcamp
  • 3 Months
upGradupGradCloud Computing Bootcamp
  • 7.5 Months
Golden Gate University Golden Gate University Doctor of Business Administration in Digital Leadership
  • 36 Months
New
Jindal Global UniversityJindal Global UniversityMaster of Design in User Experience
  • 12 Months
New
Golden Gate University Golden Gate University Doctor of Business Administration (DBA)
  • 36 Months
Bestseller
Ecole Supérieure de Gestion et Commerce International ParisEcole Supérieure de Gestion et Commerce International ParisDoctorate of Business Administration (DBA)
  • 36 Months
Rushford, GenevaRushford Business SchoolDoctorate of Business Administration (DBA)
  • 36 Months
KnowledgeHut upGradKnowledgeHut upGradSAFe® 6.0 Certified ScrumMaster (SSM) Training
  • Self-Paced
KnowledgeHut upGradKnowledgeHut upGradPMP® certification
  • Self-Paced
IIM KozhikodeIIM KozhikodeProfessional Certification in HR Management and Analytics
  • 6 Months
Bestseller
Duke CEDuke CEPost Graduate Certificate in Product Management
  • 4-8 Months
Bestseller
upGrad KnowledgeHutupGrad KnowledgeHutLeading SAFe® 6.0 Certification
  • 16 Hours
Popular
upGrad KnowledgeHutupGrad KnowledgeHutCertified ScrumMaster®(CSM) Training
  • 16 Hours
Bestseller
PwCupGrad CampusCertification Program in Financial Modelling & Analysis in association with PwC India
  • 4 Months
upGrad KnowledgeHutupGrad KnowledgeHutSAFe® 6.0 POPM Certification
  • 16 Hours
O.P.Jindal Global UniversityO.P.Jindal Global UniversityMaster of Science in Artificial Intelligence and Data Science
  • 12 Months
Bestseller
Liverpool John Moores University Liverpool John Moores University MS in Machine Learning & AI
  • 18 Months
Popular
Golden Gate UniversityGolden Gate UniversityDBA in Emerging Technologies with concentration in Generative AI
  • 3 Years
IIIT BangaloreIIIT BangaloreExecutive Post Graduate Programme in Machine Learning & AI
  • 13 Months
Bestseller
IIITBIIITBExecutive Program in Generative AI for Leaders
  • 4 Months
upGradupGradAdvanced Certificate Program in GenerativeAI
  • 4 Months
New
IIIT BangaloreIIIT BangalorePost Graduate Certificate in Machine Learning & Deep Learning (Executive)
  • 8 Months
Bestseller
Jindal Global UniversityJindal Global UniversityMaster of Design in User Experience
  • 12 Months
New
Liverpool Business SchoolLiverpool Business SchoolMBA with Marketing Concentration
  • 18 Months
Bestseller
Golden Gate UniversityGolden Gate UniversityMBA with Marketing Concentration
  • 15 Months
Popular
MICAMICAAdvanced Certificate in Digital Marketing and Communication
  • 6 Months
Bestseller
MICAMICAAdvanced Certificate in Brand Communication Management
  • 5 Months
Popular
upGradupGradDigital Marketing Accelerator Program
  • 05 Months
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in Corporate & Financial Law
  • 12 Months
Bestseller
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in AI and Emerging Technologies (Blended Learning Program)
  • 12 Months
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in Intellectual Property & Technology Law
  • 12 Months
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in Dispute Resolution
  • 12 Months
upGradupGradContract Law Certificate Program
  • Self paced
New
ESGCI, ParisESGCI, ParisDoctorate of Business Administration (DBA) from ESGCI, Paris
  • 36 Months
Golden Gate University Golden Gate University Doctor of Business Administration From Golden Gate University, San Francisco
  • 36 Months
Rushford Business SchoolRushford Business SchoolDoctor of Business Administration from Rushford Business School, Switzerland)
  • 36 Months
Edgewood CollegeEdgewood CollegeDoctorate of Business Administration from Edgewood College
  • 24 Months
Golden Gate UniversityGolden Gate UniversityDBA in Emerging Technologies with Concentration in Generative AI
  • 36 Months
Golden Gate University Golden Gate University DBA in Digital Leadership from Golden Gate University, San Francisco
  • 36 Months
Liverpool Business SchoolLiverpool Business SchoolMBA by Liverpool Business School
  • 18 Months
Bestseller
Golden Gate UniversityGolden Gate UniversityMBA (Master of Business Administration)
  • 15 Months
Popular
O.P.Jindal Global UniversityO.P.Jindal Global UniversityMaster of Business Administration (MBA)
  • 12 Months
New
Deakin Business School and Institute of Management Technology, GhaziabadDeakin Business School and IMT, GhaziabadMBA (Master of Business Administration)
  • 12 Months
Liverpool John Moores UniversityLiverpool John Moores UniversityMS in Data Science
  • 18 Months
Bestseller
O.P.Jindal Global UniversityO.P.Jindal Global UniversityMaster of Science in Artificial Intelligence and Data Science
  • 12 Months
Bestseller
IIIT BangaloreIIIT BangalorePost Graduate Programme in Data Science (Executive)
  • 12 Months
Bestseller
O.P.Jindal Global UniversityO.P.Jindal Global UniversityO.P.Jindal Global University
  • 12 Months
WoolfWoolfMaster of Science in Computer Science
  • 18 Months
New
Liverpool John Moores University Liverpool John Moores University MS in Machine Learning & AI
  • 18 Months
Popular
Golden Gate UniversityGolden Gate UniversityDBA in Emerging Technologies with concentration in Generative AI
  • 3 Years
Rushford, GenevaRushford Business SchoolDoctorate of Business Administration (AI/ML)
  • 36 Months
Ecole Supérieure de Gestion et Commerce International ParisEcole Supérieure de Gestion et Commerce International ParisDBA Specialisation in AI & ML
  • 36 Months
Golden Gate University Golden Gate University Doctor of Business Administration (DBA)
  • 36 Months
Bestseller
Ecole Supérieure de Gestion et Commerce International ParisEcole Supérieure de Gestion et Commerce International ParisDoctorate of Business Administration (DBA)
  • 36 Months
Rushford, GenevaRushford Business SchoolDoctorate of Business Administration (DBA)
  • 36 Months
Liverpool Business SchoolLiverpool Business SchoolMBA with Marketing Concentration
  • 18 Months
Bestseller
Golden Gate UniversityGolden Gate UniversityMBA with Marketing Concentration
  • 15 Months
Popular
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in Corporate & Financial Law
  • 12 Months
Bestseller
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in Intellectual Property & Technology Law
  • 12 Months
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in Dispute Resolution
  • 12 Months
IIITBIIITBExecutive Program in Generative AI for Leaders
  • 4 Months
New
IIIT BangaloreIIIT BangaloreExecutive Post Graduate Programme in Machine Learning & AI
  • 13 Months
Bestseller
upGradupGradData Science Bootcamp with AI
  • 6 Months
New
upGradupGradAdvanced Certificate Program in GenerativeAI
  • 4 Months
New
KnowledgeHut upGradKnowledgeHut upGradSAFe® 6.0 Certified ScrumMaster (SSM) Training
  • Self-Paced
upGrad KnowledgeHutupGrad KnowledgeHutCertified ScrumMaster®(CSM) Training
  • 16 Hours
upGrad KnowledgeHutupGrad KnowledgeHutLeading SAFe® 6.0 Certification
  • 16 Hours
KnowledgeHut upGradKnowledgeHut upGradPMP® certification
  • Self-Paced
upGrad KnowledgeHutupGrad KnowledgeHutAWS Solutions Architect Certification
  • 32 Hours
upGrad KnowledgeHutupGrad KnowledgeHutAzure Administrator Certification (AZ-104)
  • 24 Hours
KnowledgeHut upGradKnowledgeHut upGradAWS Cloud Practioner Essentials Certification
  • 1 Week
KnowledgeHut upGradKnowledgeHut upGradAzure Data Engineering Training (DP-203)
  • 1 Week
MICAMICAAdvanced Certificate in Digital Marketing and Communication
  • 6 Months
Bestseller
MICAMICAAdvanced Certificate in Brand Communication Management
  • 5 Months
Popular
IIM KozhikodeIIM KozhikodeProfessional Certification in HR Management and Analytics
  • 6 Months
Bestseller
Duke CEDuke CEPost Graduate Certificate in Product Management
  • 4-8 Months
Bestseller
Loyola Institute of Business Administration (LIBA)Loyola Institute of Business Administration (LIBA)Executive PG Programme in Human Resource Management
  • 11 Months
Popular
Goa Institute of ManagementGoa Institute of ManagementExecutive PG Program in Healthcare Management
  • 11 Months
IMT GhaziabadIMT GhaziabadAdvanced General Management Program
  • 11 Months
Golden Gate UniversityGolden Gate UniversityProfessional Certificate in Global Business Management
  • 6-8 Months
upGradupGradContract Law Certificate Program
  • Self paced
New
IU, GermanyIU, GermanyMaster of Business Administration (90 ECTS)
  • 18 Months
Bestseller
IU, GermanyIU, GermanyMaster in International Management (120 ECTS)
  • 24 Months
Popular
IU, GermanyIU, GermanyB.Sc. Computer Science (180 ECTS)
  • 36 Months
Clark UniversityClark UniversityMaster of Business Administration
  • 23 Months
New
Golden Gate UniversityGolden Gate UniversityMaster of Business Administration
  • 20 Months
Clark University, USClark University, USMS in Project Management
  • 20 Months
New
Edgewood CollegeEdgewood CollegeMaster of Business Administration
  • 23 Months
The American Business SchoolThe American Business SchoolMBA with specialization
  • 23 Months
New
Aivancity ParisAivancity ParisMSc Artificial Intelligence Engineering
  • 24 Months
Aivancity ParisAivancity ParisMSc Data Engineering
  • 24 Months
The American Business SchoolThe American Business SchoolMBA with specialization
  • 23 Months
New
Aivancity ParisAivancity ParisMSc Artificial Intelligence Engineering
  • 24 Months
Aivancity ParisAivancity ParisMSc Data Engineering
  • 24 Months
upGradupGradData Science Bootcamp with AI
  • 6 Months
Popular
upGrad KnowledgeHutupGrad KnowledgeHutData Engineer Bootcamp
  • Self-Paced
upGradupGradFull Stack Software Development Bootcamp
  • 6 Months
Bestseller
KnowledgeHut upGradKnowledgeHut upGradBackend Development Bootcamp
  • Self-Paced
upGradupGradUI/UX Bootcamp
  • 3 Months
upGradupGradCloud Computing Bootcamp
  • 7.5 Months
PwCupGrad CampusCertification Program in Financial Modelling & Analysis in association with PwC India
  • 5 Months
upGrad KnowledgeHutupGrad KnowledgeHutSAFe® 6.0 POPM Certification
  • 16 Hours
upGradupGradDigital Marketing Accelerator Program
  • 05 Months
upGradupGradAdvanced Certificate Program in GenerativeAI
  • 4 Months
New
upGradupGradData Science Bootcamp with AI
  • 6 Months
Popular
upGradupGradFull Stack Software Development Bootcamp
  • 6 Months
Bestseller
upGradupGradUI/UX Bootcamp
  • 3 Months
PwCupGrad CampusCertification Program in Financial Modelling & Analysis in association with PwC India
  • 4 Months
upGradupGradCertificate Course in Business Analytics & Consulting in association with PwC India
  • 06 Months
upGradupGradDigital Marketing Accelerator Program
  • 05 Months

Apache Spark Tutorial For Beginners: Learn Apache Spark With Examples

Updated on 25 November, 2022

6.04K+ views
11 min read

Introduction

Data is everywhere – from a small startup’s customer logs to a huge multinational company’s financial sheets. Companies use this generated data to understand how their business is performing and where they can improve. Peter Sondergaard, Senior Vice President of Gartner Research, said that information is the oil for the 21st century and analytics can be considered the combustion engine. 

But as the companies grow, so do their customers, stakeholders, business partners and products. So, the amount of data they have to handle becomes huge.

All this data has to be analyzed for creating better products for their customers. But terabytes of data produced per second cannot be handled using excel sheets and logbooks. Huge datasets can be handled by tools such as Apache Spark.

We will get into the details of the software through an introduction to Apache Spark.

What is Apache Spark?

Apache Spark is an open-source cluster computing framework. It is basically a data processing system that is used for handling huge data workloads and data sets. It can process large data sets quickly and also distribute these tasks across multiple systems for easing the workload. It has a simple API that reduces the burden from the developers when they get overwhelmed by the two terms – big data processing and distributed computing!

The development of Apache Spark started off as an open-source research project at UC Berkeley’s AMPLab by Matei Zaharia, who is considered the founder of Spark. In 2010, under a BSD license, the project was open-sourced. Later on, it became an incubated project under the Apache Software Foundation in 2013. This became one of the top projects of the company in 2014.

In 2015, Spark had more than 1000 contributors to the project. This made it one of the most active projects in the Apache Software Foundation and also in the world of big data. Over 200 companies have been supporting this project since 2009. 

But why all this craziness over Spark?

This is because Spark is capable of handling tons of data and processing it at a time. This data can be distributed over thousands of connected virtual or physical servers. It has a huge set of APIs and libraries that work with several programming languages such as Python, R, Scala and Java.  It supports streaming of data, complicated tasks such as graph processing and also machine learning. Also, the game changing features of apache spark makes its demand sky high.

It supports a wide range of databases such as Hadoop’s HDFS, Amazon S3 and NoSQL databases such as MongoDB, Apache HBase, MapR Database and Apache Cassandra. It also supports Apache Kafka and MapR Event Store.

Apache Spark Architecture

After exploring the introduction of Apache Spark, we will now learn about its structure. Learn more about Apache Architecture.

Its architecture is well-defined and has two primary components:

Resilient Distributed Datasets (RDD)

This is a collection of data items that are stored on the worker nodes of the Spark cluster. A cluster is a distributed collection of machines where you can install Spark. RDDs are called resilient, as they are capable of fixing the data in case of a failure. They are called distributed as they are spread across multiple nodes across a cluster.

Two types of RDDs are supported by Spark:

  • Hadoop datasets created from files on the HDFS (Hadoop Distributed File System)
  • Parallelized collections based on Scala collections

RDDs can be used for two types of operations that are:

  • Transformations – These operations are used for creating RDDs
  • Actions – These are used for instructing Spark to perform some computation and return the result to the driver. We will learn more about drivers in the upcoming sections 

DAG (Directed Acyclic Graph)

This can be considered as a sequence of actions on data. They are a combination of vertices and edges. Each vertex represents an RDD and each edge represents the computation that has to be performed on that RDD. This is a graph that contains all the operations applied to the RDD.

This is a directed graph as one node is connected to the other. The graph is acyclic as there is no loop or cycle within it. Once a transformation is performed, it cannot return to its original position. A transformation in Apache Spark is an action that transforms a data partition state from A to B.

So, how does this architecture work? Let us see.

The Apache Spark architecture has two primary daemons and a cluster manager. These are – master and worker daemon. A daemon is a program that is executed as a background process. A cluster in Spark can have many slaves but a single master daemon. 

Inside the master node, there is a driver program that executes the Spark application. The interactive shell you might use to run the code acts as the drive program. Inside the driver program, the Spark Context is created. This context and the driver program execute a job with the help of a cluster manager.

The job is then distributed on the worker node after it is split into many tasks. The tasks are run on the RDDs by the worker nodes. The result is given back to the Spark Context. When you increase the number of workers, the jobs can be divided into multiple partitions and run parallel over many systems. This will decrease the workload and improve the completion time of the job. 

Apache Spark: Benefits

These are the advantages of using Apache Spark:

Speed

While executing jobs, the data is first stored in RDDs. So, as this data is stored in memory, it is accessible quickly and the job will be executed faster. Along with in-memory caching, Spark also has optimized query execution. Through this, analytic queries can run faster. A very high data processing speed can be obtained. It can be 100 times faster than Hadoop for processing large scale data.

Handling multiple workloads

Apache Spark can handle multiple workloads at a time. These can be interactive queries, graph processing, machine learning and real-time analytics. A Spark application can incorporate many workloads easily.

Ease of use

Apache Spark has easy to use APIs for handling large datasets. This includes more than 100 operators that you can use to build parallel applications. These operators can transform data, and semi-structured data can be manipulated using data frame APIs.

Language support

Spark is a developer’s favourite as it supports multiple programming languages such as Java, Python, Scala and R. This gives you multiple options for developing your applications. The APIs are also very developer-friendly as they help them to hide the complicated distributed processing technology behind high-level operators that help in reducing the amount of code needed.

Efficiency

Lazy evaluation is carried out in Spark. This means that all the transformations made through the RDDS are lazy in nature. So, the results of these transformations are not produced straight away and a new RDD is created from an existing one. The user can organize the Apache program into several smaller operations, which increases the manageability of the programs.

Lazy evaluation increases the speed of the system and its efficiency.

Community support

Being one of the largest open-source big data projects, it has more than 200 developers from different companies working on it. In 2009, the community was initiated and has been growing ever since. So, if you face a technical error, you are likely to find a solution online, posted by developers.

You might also find many freelance or full-time developers ready to assist you in your Spark project.

Real-time streaming

Spark is famous for streaming real-time data. This is made possible through Spark Streaming, which is an extension of the core Spark API. This allows data scientists to handle real-time data from various sources such as Amazon Kinesis and Kafka. The processed data can then be transferred to databases, file systems and dashboards.

The process is efficient in the sense that Spark Streaming can recover from data failures quickly. It performs better load balancing and uses resources efficiently.

Applications of Apache Spark

After introduction to Apache Spark and its benefits, we will learn more about its different applications:

Machine learning

Apache Spark’s ability to store the data in-memory and execute queries repeatedly makes it a good option for training ML algorithms. This is because running similar queries repeatedly will reduce the time required for determining the best possible solution.

Spark’s Machine Learning Library (MLlib) can do advanced analytics operations such as predictive analysis, classification, sentiment analysis, clustering and dimensionality reduction.

Data integration

Data that is produced across the different systems within an organization are not always clean and organized. Spark is a very efficient tool in performing ETL operations on this data. This means it executes, extracts, transforms and loads operations to pull data from different sources, clean and organize it. This data is then loaded into another system for analysis.

Interactive analysis

This is a process through which users can perform data analytics on live data. With the help of the Structured Streaming feature in Spark, users can run interactive queries on live data. You can also run interactive queries on a live web session that will boost Web analytics. Machine learning algorithms can also be applied to these live data streams.

Fog computing

We know that IoT (Internet of things) deals with lots of data rising from various devices having sensors. This creates a network of interconnected devices and users. But as the IoT network begins to expand, there is a need for a distributed parallel processing system.

So, data processing and decentralizing storage are done through Fog Computing along with Spark. For this, Spark offers powerful components such as Spark Streaming, GraphX and MLlib. Learn more about the applications of apache spark.

Conclusion

We have learnt that Apache Spark is fast, effective and feature-rich. That is why companies such as Huawei, Baidu, IBM, JP Morgan Chase, Lockheed Martin and Microsoft are using it to accelerate their business. It is now famous in various fields such as retail, business, financial services, healthcare management and manufacturing.

As the world becomes more dependent on data, Apache Spark will continue to be an important tool for data processing in future.

Learn Software Development Courses online from the World’s top Universities. Earn Executive PG Programs, Advanced Certificate Programs or Masters Programs to fast-track your career.

Frequently Asked Questions (FAQs)

1. How does Apache Spark work?

Apache Spark incorporates existing architecture very easily. There are four different installations in Apache Spark: Local, Standalone, YARN client, and YARN cluster. Each type of installation has its way of dealing with tasks. However, for all Big Data operations, tasks are divided into Spark Batch or Batch Streaming jobs. In Spark Batch jobs, data is collected in multiple data stores, and the batch jobs are responsible for analysing data. Moreover, Batch jobs take up data and information from repositories for further analysis. On the contrary, Spark Streaming jobs use the Spark analytics tool, which uses data in real-time. For effective data management by experts, the Spark analytics tool uses streaming and historical data. They are both very efficient in their tasks.

2. What are Apache Spark’s benefits over MapReduce?

There are numerous benefits of Apache Spark over MapReduce. To begin with, the in-memory processing in Spark gives it the advantage of operating 100x faster than MapReduce. However, to work with data processing tasks, MapReduce uses persistence storage. Spark is powerful when it uses caching and in-memory data storage, whereas MapReduce has its operational data on disks. MapReduce only functions on batch processing. Spark has inbuilt libraries responsible for regulating many tasks at once using batch processing, SQL queries, streaming, and machine learning. Iterative computing is not present in MapReduce, whereas Spark is flexible with computations repeatedly.

3. What do companies think about Hadoop and Apache Spark?

Companies, nowadays, are in the market competing head-to-head against each other. To ensure they are the best in the industry, they must work with the latest tools and technology. Many companies are already working with Spark to conduct their data processing operations. Regardless of how supreme it is as a platform that will take over many other platforms, it has certain limitations. Apache Spark is the future of Big Data and is not going anywhere. It still needs to develop and create ground-breaking results to utilise its potential continuously. So, if either of them suits the data processing requirements, companies will be happy to implement them.