- Blog Categories
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Gini Index for Decision Trees
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Brand Manager Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Search Engine Optimization
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
AWS v/s Google v/s Azure: Who will win the Cloud War?
Updated on 03 July, 2023
6.81K+ views
• 13 min read
Table of Contents
In the midst of this pandemic, what is allowing us unprecedented flexibility in making faster technological advancements is the availability of various competent cloud computing systems. From delivering on-demand computing services for applications, processing and storage, now is the time to make the best use of public cloud providers. What’s more, with easy scalability there are no geographical restrictions either.
Check out our free courses to get an edge over the competition.
Machine Learning systems can be indefinitely supported by them as they are open-sourced and within reach now more than ever with increased affordability for businesses. In fact, public cloud providers are increasingly helpful in building Machine Learning models. So, the question that arises for us is – what are the possibilities for using them for deployment as well?
What do we mean by deployment?
Model building is very much like the process of designing any product. From ideation and data preparation to prototyping and testing. Deployment basically is the actionable point of the whole process, which means that we use the already trained model and make its predictions available to users or other systems in an automated, reproducible and auditable manner.
Check out upGrad’s Full Stack Development Bootcamp (JS/MERN)
While a lot of cloud providers have created customised and dedicated ML stacks, there are on-premise server services and Heroku, which provides a ready and secure environment that allows you to deploy faster. There are however, challenges cloud providers face collectively.
What are the challenges?
Deployment is hard!
Contrary to general belief, you’re not only deploying code, you’re also, in essence deploying data that moves between various departments, in various formats, that change as the model changes, and there are a ton of moving variables in the system that can be vulnerable to that.
Check out upGrad’s Java Bootcamp.
There is no homogeneity
End-to-end ML applications are often full of components written in different programming languages. The choice of a programming language is dependent on the use case and Python, R, Scala, or any other language can be used to build different models.
In-Demand Software Development Skills
ML deployments aren’t monolithic
Machine learning model deployments are not necessarily self-contained solutions. They are commonly embedded or integrated into various business applications.
Testing and validation pain points
Data changes result in an evolution process for models for which methods improve or software dependencies change. Every time such a change occurs, model performance needs to be re-validated.
Complexity of release strategies
Depending on the use case, ML models need to be updated more frequently than regular software applications.
Data security issues
With data being a vulnerable resource, the open-sourced nature of cloud providers does raise some eyebrows. A lot of banking sector companies have been apprehensive about using the cloud because of data security issues.
Explore Our Software Development Free Courses
The top three contenders
AWS, Google Cloud and Microsoft Azure which are the top three contenders in the cloud market, can be compared on a few important parameters to make the best choice.
AWS
According to Gartner’s Magic Quadrant report, AWS is ranked highest in terms of both vision and ability to execute. What makes it so is AWS’s approach that it truly democratises AI by delivering tools and services that enable all developers even those who have no prior experience of ML. It’s even attractive for small businesses as the pricing is based on usage not a blanket fee. Additionally there’s a lot of room for flexibility, customisation and support for third-party integrations.
Google Cloud
Google is committed to making AI accessible to all. Google has been open-sourcing its AI/ML tools and engineers have been actively putting out their research for everyone to access. Cybersecurity is a critical area where Google is employing AI/ML to solve business problems.
Chronicle, a subsidiary of Alphabet (Google’s parent company), is all set to leverage Google’s AI/ML expertise and provide near limitless computing power to develop a world-class security analytics solution. It can be easily integrated with other Google services. A really huge cost-saving discount that Google Cloud offers are SUDs or Sustained Use Discounts. These are automatic discounts that Google Cloud Platform provides for the period of time one uses the platform.
Microsoft Azure
As a public cloud, Microsoft Azure services make sure that no user has to buy any hardware or software to use it. Azure Machine Learning can be used for any kind of machine learning, from classical ML to deep learning, supervised, and unsupervised. Most languages are supported including Python or R code or zero-code/low-code options. It’s biggest plus point is its speed with a guaranteed downtime of less than 4.38 hours a year.
Explore our Popular Software Engineering Courses
Comparative study: AWS, Google Cloud and Microsoft Azure
Let’s see how well they perform on the following four parameters.
Convenience of use and learning curve
The difference in progress between these companies can be measured by the level of investment and their failure/success in gaining knowledge. A steep learning curve makes for a slowdown in industry adoption and is directly proportional with the convenience it imparts to the user experience.
Industry adoption
As you can see below, AWS has pretty much taken over the market share when it comes to measuring their adoption by various small and large businesses. It helps that it was one of the first ones to enter this market. The usage statistics are an indication of how easily they can be used as well as how quickly they allow users to reach the deployment stage and a proof of their consistency.
The more customers consider which of the clouds to use, the more possibility of them searching for it on Google to understand their offerings. According to Google Analytics, it’s evidently shown that popularity in terms of Google search for Amazon Web services has been consistently high. The more it is searched for, the more likely it is to be widely used.
An enterprise does have a choice to use multiple cloud providers to make the product deployment as smooth as possible. Also to avoid ‘vendor lock-in’, organisations are using different cloud providers to solve their business problems with as much flexibility as possible. The recent RightScale 2019 State of the Cloud shows that 84% of their sample size have adopted multi-cloud strategy.
Cloud Infrastructure
Major public cloud providers offer services based on multi-tenant servers that are shared. The capacity required to compute and handle unpredictable changes is humongous and there is a need to optimise user demand across different servers. Although the popularity of serverless models is rising, there is still high density of work that needs to be processed.
According to Stack Overflow, a popular community of developers here we can gauge the share of usage of the three cloud systems through their analysis of patterns based on the percentage of questions they receive in a month.
Pricing
Lower cost enables start-ups also to adopt cloud services. All processes for a start-up have to be built from scratch. What public cloud computing can do for them is phenomenal in the sense that the capital required for investing in the pricing can be managed until they find a long term investor. The quality of the project can remain uncompromised. For each of the scenarios below, you can observe the hourly on-demand price and then the hourly price per GB of RAM for each.
Key Cloud Tools
To break the competition between AWS vs Google vs Azure, they have started offering these services to meet the latest trends and customer demands and are expected to continue expanding them. If you are trying to decide between Azure vs AWS certification, then consider these tools as they are important for making the most suitable decision.
AWS Key Tools
SageMaker to Serverless
Among the long list of services AWS provides in AI and machine learning, the list also features AWS SageMaker, which trains and deploys machine learning models. Additionally, AWS provides the Lex conversational interface that powers Alexa services, as well as the Lambda serverless computing service and the Greengrass IoT messaging service.
Artificial Intelligence and Machine Learning
AWS offers a variety of AI services, including DeepLens, a camera that uses AI to develop and implement machine learning algorithms for optical character recognition, image recognition, and object recognition. Furthermore, AWS has unveiled Gluon, an open-source deep learning library that non-developers and developers can use to create neural networks easily and fast without prior knowledge of AI.
Google Cloud Key Tools
IoT to Serverless
Google Cloud has a wide range of advanced technologies, including APIs for natural language, translation, and speech. It also offers serverless services and IoT, currently in beta preview.
Big On AI
As a leader in artificial intelligence development, Google Cloud allows connection to Tensor Flow, an open-source library used to build machine learning applications. Extremely popular among developers, TensorFlow is mainly used to build models by using data flow graphs.
Azure Key Tools
Supporting MSFT Software
Azure provides various tools to support Microsoft software used on-premises. One such tool is Azure Backup, which connects Windows Server Backup in Windows Server 2012 R2 and Windows Server 2016. Additionally, Visual Studio Team Services enables the hosting of Visual Studio projects on Azure.
Cognitive Services
Microsoft is deeply committed to machine learning and AI and offers a bot service and machine learning service on Azure. Additionally, they have cognitive services, such as the Computer Vision API, Bing Web Search API, Face API, Text Analytics API, and Custom Vision Service. Microsoft also provides various management and analytics services for IoT. Their serverless computing service is called Functions.
AWS vs Azure vs Google Cloud: Advantages
It is important to look at the pros when determining which cloud service among the three is most suitable for use.
Amazon Web Services
- Offers a variety of services and has more computational capacity than Google Cloud and Azure.
- It has a global reach with worldwide data centres for low-latency access and improved performance.
- Prioritizes cloud security and offers various tools and applications for
Google Cloud
- It scales resources based on demand, ensuring flexible infrastructure.
- It offers powerful tools to facilitate big data, machine learning and advanced analytics.
- It prioritizes security by offering advanced security tools.
Microsoft Azure
- It offers diverse cloud solutions like VMs, databases, AI, analytics, and more, effectively addressing various needs.
- It integrates well with Windows Server, AD, and Office 365, simplifying management and promoting collaboration.
- It has hybrid capabilities which allow seamless integration of on-premises infrastructure with the cloud, leveraging existing investments and cloud scalability.
How can clouds help?
Major cloud computing systems like AWS, GCP, Heroku, Azure and IBM cloud are providing a safe haven for all data aspirants and companies with limited funding who’d like to explore machine learning models and efficiently deploy them. These systems are cheap to operate.
By paying a few dollars an hour on average you can drive your very own machine learning application almost instantly! Public clouds also provide cheap data storage. You can leverage true databases or storage systems as the input of the data into the machine learning-enabled applications.
They all provide software developer kits (SDKs) and application program interfaces (APIs) that allow one to embed machine-learning functionality directly into applications and they support most programming languages. The real value of machine-learning technology is the use from within applications, because the types of predictions that are made are more operations and transaction focused.
However, it would be a good strategy for companies to consider both on-premise and cloud, as clouds may cost a bit in the experimentation phase. The clouds also have their own tools created on top of the open-source tools like Kubernetes, Dockers, Tf etc. Kubernetes, being a popular Google product is an open-source system for automating deployment, scaling, and management of applications, but it would run better on GCP than on other provider platforms. Above all, it will be critical to know which tools one is equipped to use in order to choose the best cloud service for oneself.
Sources:
https://docs.microsoft.com/en-us/azure/machine-learning/overview-what-is-azure-ml
https://www.kdnuggets.com/2014/11/microsoft-azure-machine-learning.html
https://sada.com/blog/google-cloud/gcp-vs-aws-why-gcp-better-option-2019/
https://www.kdnuggets.com/2020/02/deploy-machine-learning-model.html
https://www.cbronline.com/news/aws-vs-azure-vs-gcp
https://kinsta.com/blog/google-cloud-vs-aws/
https://vianalabs.com/aws-vs-azure-vs-google-cloud-which-is-best-for-me/
Frequently Asked Questions (FAQs)
1. What is the future of cyber security?
Cyber security could have a variety of futures. One potential is that attackers will continue to develop new ways to exploit system flaws, making it difficult for defenses to stay up. As a result, cybercrime and major data breaches will increase. Another potential is that cyber warfare will become more prevalent as nation-states and other players utilize cyber attacks as a weapon of war. A third potential is that firms would take a more comprehensive approach to cyber security, focusing on identifying and mitigating vulnerabilities before they are exploited. Similarly, artificial intelligence and machine learning may see more application in cyber security, as these technologies can assist firms in promptly identifying and responding to threats.
2. What are the limitations of cyber security?
Organizations can only see a restricted perspective of what is happening on their networks, which is a significant challenge in cyber security. Because malicious activity can occur through covert tunnels and paths that are not visible to standard security technologies, this is the case. Another issue is that organizations frequently have a distorted view of the threats they face. This is due to the fact that the cyber security landscape is always changing, and new threats are continually appearing. The third issue is that cyber-security protection in enterprises is frequently inadequate. This is due to the fact that many businesses lack the means to implement complete security solutions.
3. What are the uses of digital forensics?
The technique of extracting digital evidence from a computing device or storage medium is known as digital forensics. The digital artifacts of a crime are identified and documented by examining the evidence. This can be used to investigate computer crimes, provide evidence in court proceedings, safeguard computer networks from attack, investigate hacking occurrences, and recover data from damaged or corrupted hard drives, among other things. It can also be used to figure out what happened to a PC that has gone missing. In today's environment, digital forensics is a critical instrument that is employed in a wide range of situations.
RELATED PROGRAMS