Basic Concepts of Data Science: Technical Concept Every Beginner Should Know
Updated on Nov 23, 2022 | 9 min read | 10.6k views
Share:
For working professionals
For fresh graduates
More
Updated on Nov 23, 2022 | 9 min read | 10.6k views
Share:
Table of Contents
Data Science is the field that helps in extracting meaningful insights from data using programming skills, domain knowledge, and mathematical and statistical knowledge. It helps to analyze the raw data and find the hidden patterns.
Therefore, a person should be clear with statistics concepts, machine learning, and a programming language such as Python or R to be successful in this field. In this article, I will share the basic Data Science concepts that one should know before transitioning into the field.
Whether you are a beginner in the field or want to explore more about it or you want to transition into this multifaceted field, this article will help you understand Data Science more by exploring the basic Data Science concepts.
Learn Data Science Courses online at upGrad
Read: Highest Paying Data Science Jobs in India
Statistics make a central part of data science. Statistics is a broad field that offers many applications. Data scientists must know the statistics very well. This can be inferred from the fact that statistics help to interpret and organize data. The descriptive statistics and knowledge of probability are must-know data science concepts.
Below are the basic Statistics concepts that a Data Scientist should know:
Descriptive statistics help to analyze the raw data to find the primary and necessary features from it. Descriptive statistics offers a way to visualize the data to present it in a readable and meaningful way. It is different from inferential statistics as it helps to visualize the data in a meaningful way in the form of plots. Inferential statistics, on the other hand, help in finding insights from data analysis.
Probability is the mathematical branch that determines the likelihood of occurrence of any event in a random experiment. As an example, a toss of a coin predicts the probability of getting a red ball from a bag of colored balls. Probability is a number whose value lies between 0 and 1. The higher the value, the event is more likely to happen.
There are different types of probability, depending upon the type of event. Independent events are the two or more occurrences of an event that are independent of each other. Conditional probability is the probability of occurrence of any event having a relationship with any other event.
Dimensionality reduction means reducing the dimensions of a data set so that it resolves many problems that do not exist in the lower dimension data. This is because there are many factors in the high dimensional data set and scientists need to create more samples for every combination of features.
This further increases the complexity of data analysis. Therefore, the dimensionality reduction concept resolves all these problems and offers many potential benefits such as lesser redundancy, fast computing, and fewer data to store.
The central tendency of a data set is a single value that describes the complete data by the identification of a central value. There are different ways to measure the central tendency:
upGrad’s Exclusive Data Science Webinar for you –
How to Build Digital & Data Mindset
Hypothesis testing is to test the result of a survey. There are two types of hypothesis as part of hypothesis testing viz. Null hypothesis and Alternate Hypothesis. The null hypothesis is the general statement that has no relation to the surveyed phenomenon. The Alternate hypothesis is the contradictory statement of the Null hypothesis.
Test of significance is a set of tests that helps to test the validity of the cited Hypothesis. Below are some of the tests that help in the acceptance or rejection of the Null Hypothesis.
Sampling is the part of statistics that involves the data collection, data analysis, and data interpretation of the data which is collected from a random set of population. Under-sampling and oversampling techniques are followed in case we find the data is not good enough to get the interpretations. Under-sampling involves the removal of redundant data, and oversampling is the technique of imitating the naturally existing data sample.
It is the statistical method that is based on the Bayes Theorem. Bayes theorem defines the probability of occurrence of an event depending upon the prior condition related to an event. Therefore, Bayesian Statistics determine the probability based on previous results. Bayes Theorem also defines the conditional probability, which is the probability of occurrence of an event considering certain conditions to be true.
Machine learning is training the machine based on a specific data set with the help of a model. This trained model then makes future predictions. There are two types of machine learning modeling, i.e., supervised and unsupervised. The supervised learning works on structured data where we predict the target variable. The unsupervised machine learning works on unstructured data that has no target field.
Supervised machine learning has two techniques: classification and regression. The classification modeling technique is used when we want the machine to predict the category, while the regression technique determines the number. As an example, predicting the future sale of a car is a regression technique and predicting the occurrence of diabetes in a sample of the population is classification.
Below are some of the essential terms related to Machine learning that every Machine Learning Engineer and Data Scientist should know:
Y=mX + c, where m and c are the coefficients.
There are many other regression techniques, such as Logistic regression, ridge regression, lasso regression, polynomial regression, etc.
Python is the most used language in data science, as it is the most versatile programming language and offers many applications. R is another language used by Data Scientists, but Python is more widely used. Python has a large number of libraries that make the life of a Data Scientist easy. Therefore, every data scientist should know these libraries.
Below are the most used libraries in Data Science:
Must Read: Career in Data Science
Overall, Data Science is a field that is a combination of statistical methods, modeling techniques, and programming knowledge. On the one hand, a data scientist has to analyze the data to get the hidden insights and then apply the various algorithms to create a machine learning model. All this is done using a programming language such as Python or R.
If you are curious to learn about data science, check out IIIT-B & upGrad’s Executive PG Program in Data Science which is created for working professionals and offers 10+ case studies & projects, practical hands-on workshops, mentorship with industry experts, 1-on-1 with industry mentors, 400+ hours of learning and job assistance with top firms.
Get Free Consultation
By submitting, I accept the T&C and
Privacy Policy
Start Your Career in Data Science Today
Top Resources