- Blog Categories
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Gini Index for Decision Trees
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Brand Manager Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Search Engine Optimization
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
Bayes Theorem in Machine Learning: Introduction, How to Apply & Example
Updated on 10 October, 2022
44.46K+ views
• 9 min read
Table of Contents
Introduction: What is Bayes Theorem?
Bayes Theorem is named for English mathematician Thomas Bayes, who worked extensively in decision theory, the field of mathematics that involves probabilities. Bayes Theorem is also used widely in machine learning, where it is a simple, effective way to predict classes with precision and accuracy. The Bayesian method of calculating conditional probabilities is used in machine learning applications that involve classification tasks.
A simplified version of the Bayes Theorem, known as the Naive Bayes Classification, is used to reduce computation time and costs. In this article, we take you through these concepts and discuss the applications of the Bayes Theorem in machine learning.
Join the machine learning course online from the World’s top Universities – Masters, Executive Post Graduate Programs, and Advanced Certificate Program in ML & AI to fast-track your career.
Why use Bayes Theorem in Machine Learning?
Bayes Theorem is a method to determine conditional probabilities – that is, the probability of one event occurring given that another event has already occurred. Because a conditional probability includes additional conditions – in other words, more data – it can contribute to more accurate results.
Thus, conditional probabilities are a must in determining accurate predictions and probabilities in Machine Learning. Given that the field is becoming ever more ubiquitous across a variety of domains, it is important to understand the role of algorithms and methods like Bayes Theorem in Machine Learning.
Before we go into the theorem itself, let’s understand some terms through an example. Say a bookstore manager has information about his customers’ age and income. He wants to know how book sales are distributed across three age-classes of customers: youth (18-35), middle-aged (35-60), and seniors (60+).
Let us term our data X. In Bayesian terminology, X is called evidence. We have some hypothesis H, where we have some X that belongs to a certain class C.
Our goal is to determine the conditional probability of our hypothesis H given X, i.e., P(H | X).
In simple terms, by determining P(H | X), we get the probability of X belonging to class C, given X. X has attributes of age and income – let’s say, for instance, 26 years old with an income of $2000. H is our hypothesis that the customer will buy the book.
Must Read: Free nlp online course!
Pay close attention to the following four terms:
- Evidence – As discussed earlier, P(X) is known as evidence. It is simply the probability that the customer will, in this case, be of age 26, earning $2000.
- Prior Probability – P(H), known as the prior probability, is the simple probability of our hypothesis – namely, that the customer will buy a book. This probability will not be provided with any extra input based on age and income. Since the calculation is done with lesser information, the result is less accurate.
- Posterior Probability – P(H | X) is known as the posterior probability. Here, P(H | X) is the probability of the customer buying a book (H) given X (that he is 26 years old and earns $2000).
- Likelihood – P(X | H) is the likelihood probability. In this case, given that we know the customer will buy the book, the likelihood probability is the probability that the customer is of age 26 and has an income of $2000.
Given these, Bayes Theorem states:
P(H | X) = [ P(X | H) * P(H) ] / P(X)
Note the appearance of the four terms above in the theorem – posterior probability, likelihood probability, prior probability, and evidence.
Read: Naive Bayes Explained
How to Apply Bayes Theorem in Machine Learning
The Naive Bayes Classifier, a simplified version of the Bayes Theorem, is used as a classification algorithm to classify data into various classes with accuracy and speed.
Let’s see how the Naive Bayes Classifier can be applied as a classification algorithm.
- Consider a general example: X is a vector consisting of ‘n’ attributes, that is, X = {x1, x2, x3, …, xn}.
- Say we have ‘m’ classes {C1, C2, …, Cm}. Our classifier will have to predict X belongs to a certain class. The class delivering the highest posterior probability will be chosen as the best class. So mathematically, the classifier will predict for class Ci iff P(Ci | X) > P(Cj | X). Applying Bayes Theorem:
P(Ci | X) = [ P(X | Ci) * P(Ci) ] / P(X)
- P(X), being condition-independent, is constant for each class. So to maximize P(Ci | X), we must maximize [P(X | Ci) * P(Ci)]. Considering every class is equally likely, we have P(C1) = P(C2) = P(C3) … = P(Cn). So ultimately, we need to maximize only P(X | Ci).
- Since the typical large dataset is likely to have several attributes, it is computationally expensive to perform the P(X | Ci) operation for each attribute. This is where class-conditional independence comes in to simplify the problem and reduce computation costs. By class-conditional independence, we mean that we consider the attribute’s values to be independent of one another conditionally. This is the Naive Bayes Classification.
P(Xi | C) = P(x1 | C) * P(x2 | C) *… * P(xn | C)
It is now easy to compute the smaller probabilities. One important thing to note here: since xk belongs to each attribute, we also need to check whether the attribute we are dealing with is categorical or continuous.
- If we have a categorical attribute, things are simpler. We can just count the number of instances of class Ci consisting of the value xk for attribute k and then divide that by the number of instances of class Ci.
- If we have a continuous attribute, considering we have a normal distribution function, we apply the following formula, with mean ? and standard deviation ?:
Ultimately, we will have P(x | Ci) = F(xk, ?k, ?k).
Now, we have all the values we need to use Bayes Theorem for each class Ci. Our predicted class will be the class achieving the highest probability P(X | Ci) * P(Ci).
Best Machine Learning and AI Courses Online
Example: Predictively Classifying Customers of a Bookstore
We have the following dataset from a bookstore:
Age | Income | Student | Credit_Rating | Buys_Book |
Youth | High | No | Fair | No |
Youth | High | No | Excellent | No |
Middle_aged | High | No | Fair | Yes |
Senior | Medium | No | Fair | Yes |
Senior | Low | Yes | Fair | Yes |
Senior | Low | Yes | Excellent | No |
Middle_aged | Low | Yes | Excellent | Yes |
Youth | Medium | No | Fair | No |
Youth | Low | Yes | Fair | Yes |
Senior | Medium | Yes | Fair | Yes |
Youth | Medium | Yes | Excellent | Yes |
Middle_aged | Medium | No | Excellent | Yes |
Middle_aged | High | Yes | Fair | Yes |
Senior | Medium | No | Excellent | No |
We have attributes like age, income, student, and credit rating. Our class, buys_book, has two outcomes: Yes or No.
Our goal is to classify based on the following attributes:
X = {age = youth, student = yes, income = medium, credit_rating = fair}.
As we showed earlier, to maximize P(Ci | X), we need to maximize [ P(X | Ci) * P(Ci) ] for i = 1 and i = 2.
Hence, P(buys_book = yes) = 9/14 = 0.643
P(buys_book = no) = 5/14 = 0.357
P(age = youth | buys_book = yes) = 2/9 = 0.222
P(age = youth | buys_book = no) =3/5 = 0.600
P(income = medium | buys_book = yes) = 4/9 = 0.444
P(income = medium | buys_book = no) = 2/5 = 0.400
P(student = yes | buys_book = yes) = 6/9 = 0.667
P(student = yes | buys_book = no) = 1/5 = 0.200
P(credit_rating = fair | buys_book = yes) = 6/9 = 0.667
P(credit_rating = fair | buys_book = no) = 2/5 = 0.400
Using the above-calculated probabilities, we have
P(X | buys_book = yes) = 0.222 x 0.444 x 0.667 x 0.667 = 0.044
Similarly,
P(X | buys_book = no) = 0.600 x 0.400 x 0.200 x 0.400 = 0.019
Which class does Ci provide the maximum P(X|Ci)*P(Ci)? We compute:
P(X | buys_book = yes)* P(buys_book = yes) = 0.044 x 0.643 = 0.028
P(X | buys_book = no)* P(buys_book = no) = 0.019 x 0.357 = 0.007
Comparing the above two, since 0.028 > 0.007, the Naive Bayes Classifier predicts that the customer with the above-mentioned attributes will buy a book.
Checkout: Machine Learning Project Ideas & Topics
In-demand Machine Learning Skills
Is the Bayesian Classifier a Good Method?
Algorithms based on Bayes Theorem in machine learning provide results comparable to other algorithms, and Bayesian classifiers are generally considered simple high-accuracy methods. However, care should be taken to remember that Bayesian classifiers are particularly appropriate where the assumption of class-conditional independence is valid, and not across all cases. Another practical concern is that acquiring all the probability data may not always be feasible.
Popular AI and ML Blogs & Free Courses
Conclusion
Bayes Theorem has many applications in machine learning, particularly in classification-based problems. Applying this family of algorithms in machine learning involves familiarity with terms such as prior probability and posterior probability. In this article, we discussed the basics of the Bayes Theorem, its use in machine learning problems, and worked through a classification example.
Since Bayes Theorem forms a crucial part of classification-based algorithms in Machine Learning, you can learn more about upGrad’s Advanced Certificate Programme in Machine Learning & NLP. This course has been crafted keeping in mind various kinds of students interested in Machine Learning, offering 1-1 mentorship and much more.
Frequently Asked Questions (FAQs)
1. Why do we use Bayes theorem in Machine Learning?
The Bayes Theorem is a method for calculating conditional probabilities, or the likelihood of one event occurring if another has previously occurred. A conditional probability can lead to more accurate outcomes by including extra conditions — in other words, more data. In order to obtain correct estimations and probabilities in Machine Learning, conditional probabilities are required. Given the field's increasing prevalence across a wide range of domains, it's critical to comprehend the importance of algorithms and approaches like Bayes Theorem in Machine Learning.
2. Is Bayesian Classifier a good choice?
In machine learning, algorithms based on the Bayes Theorem produce results that are comparable to those of other methods, and Bayesian classifiers are widely regarded as simple high-accuracy approaches. However, it's important to keep in mind that Bayesian classifiers are best used when the condition of class-conditional independence is correct, not in all circumstances. Another consideration is that obtaining all of the likelihood data may not always be possible.
3. How can Bayes theorem be applied practically?
The Bayes theorem calculates the likelihood of occurrence based on new evidence that is or could be related to it. The method can also be used to see how hypothetical new information affects the likelihood of an event, assuming the new information is true. Take, for example, a single card selected from a deck of 52 cards. The probability of the card becoming a king is 4 divided by 52, or 1/13, or roughly 7.69 percent. Keep in mind that the deck contains four kings. Let's say it's revealed that the chosen card is a face card. Because there are 12 face cards in a deck, the probability that the picked card is a king is 4 divided by 12, or roughly 33.3 percent.
RELATED PROGRAMS