- Blog Categories
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Gini Index for Decision Trees
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Brand Manager Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Search Engine Optimization
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
Understanding Bayesian Decision Theory With Simple Example
Updated on 23 September, 2022
16.31K+ views
• 8 min read
Table of Contents
Introduction
We encounter lots of classification problems in real life. For example, an electronic store might need to know whether a particular customer based on a certain age, is going to buy a computer or not. Through this article, we are going to introduce a method named ‘Bayesian Decision Theory’ which helps us in making decisions on whether to select a class with ‘x’ probability or an opposite class with ‘y’ probability based on a certain feature.
Best Machine Learning and AI Courses Online
Definition
Bayesian Decision Theory is a simple but fundamental approach to a variety of problems like pattern classification. The entire purpose of the Bayes Decision Theory is to help us select decisions that will cost us the least ‘risk’. There is always some sort of risk attached to any decision we choose. We will be going through the risk involved in this classification later in this article.
In-demand Machine Learning Skills
Get Machine Learning Certification from the World’s top Universities. Earn Masters, Executive PGP, or Advanced Certificate Programs to fast-track your career.
Basic Decision
Let us take an example where an electronics store company wants to know whether a customer is going to buy a computer or not. So we have the following two buying classes:
w1 – Yes (Customer will buy a computer)
w2 – No (Customer will not buy a computer)
Now, we will look into the past records of our customer database. We will note down the number of customers buying computers and also the number of customers not buying a computer. Now, we will calculate the probabilities of customers buying a computer. Let it be P(w1). Similarly, the probability of customers not buying a customer is P(w2).
Now we will do a basic comparison for our future customers.
For a new customer,
If P(w1) > P(w2), then the customer will buy a computer (w1)
And, if P(w2) > P(w1), then the customer will not buy a computer (w2)
Here, we have solved our decision problem.
But, what is the problem with this basic Decision method? Well, most of you might have guessed right. Based on just previous records, it will always give the same decision for all future customers. This is illogical and absurd.
So we need something that will help us in making better decisions for future customers. We do that by introducing some features. Let’s say we add a feature ‘x’ where ‘x’ denotes the age of the customer. Now with this added feature, we will be able to make better decisions.
To do this, we need to know what Bayes Theorem is.
Read: Types of Supervised Learning
Bayes Theorem and Decision Theory
For our class w1 and feature ‘x’, we have:
P(w1 | x)= P(x | w1) * P(w1)P(x)
There are 4 terms in this formula that we need to understand:
- Prior – P(w1) is the Prior Probability that w1 is true before the data is observed
- Posterior – P(w1 | x) is the Posterior Probability that w1 is true after the data is observed.
- Evidence – P(x) is the Total Probability of the Data
- Likelihood – P(x | w1) is the information about w1 provided by ‘x’
P(w1 | x) is read as Probability of w1 given x
More Precisely, it is the probability that a customer will buy a computer, given a specific customer’s age.
Now, we are ready to make our decision:
For a new customer,
If P(w1 | x) > P(w2 | x), then the customer will buy a computer (w1)
And, if P(w2 | x) > P(w1 | x), then the customer will not buy a computer (w2)
This decision seems more logical and trustworthy since we have some features here to work upon and our decision is based on the features of our new customers and also past records and not just past records as in earlier cases.
Now, from the formula, you can see that for both our classes w1 and w2, our denominator P(x) is constant. So, we can utilize this idea and can form another form of decision as below:
If P(x | w1)*P(w1) > P(x | w2)*P(w2), then the customer will buy a computer (w1)
And, if P(x | w2)*P(w2) > P(x | w1)*P(w1), then the customer will not buy a computer (w2)
We can notice an interesting fact here. If somehow, our prior probabilities P(w1) and P(w2) are equal, we can still be able to make our decision based on our likelihood probabilities P(x | w1) and P(x | w2). Similarly, if our likelihood probabilities are equal, we can make decisions based on our prior probabilities P(w1) and P(w2).
Must Read: Types of Regression Models in Machine Learning
Risk Calculation
As mentioned earlier, there is always going to be some amount of ‘risk’ or error made in the decision. So, we also need to determine the probability of error made in a decision. This is very simple and I will demonstrate that in terms of visualizations.
Let us consider we have some data and we have made a decision according to Bayesian Decision Theory.
We get a graph somewhat like below:
The y-axis is the posterior probability P(w(i) | x) and the x-axis is our feature ‘x’. The axis where the posterior probability for both the classes is equal, that axis is called our decision boundary.
So at Decision Boundary:
P(w1 | x) = P(w2 | x)
So to the left of the decision boundary, we decide in favor of w1(buying a computer) and to the right of the decision boundary, we decide in favor of w2(not buying a computer).
But, as you can see in the graph, there is some non-zero magnitude of w2 to the left of the decision boundary. Also, there is some non-zero magnitude of w1 to the right of the decision boundary. This extension of another class over another class is what you call a risk or probability error.
Calculation of Probability Error
To calculate the probability of error for class w1, we need to find the probability that the class is w2 in the area that is to the left of the decision boundary. Similarly, the probability of error for class w2 is the probability that the class is w1 in the area that is to the right of the decision boundary.
Mathematically speaking, the minimum error for class:
w1 is P(w2 | x)
And for class w2 is P(w1 | x)
You got your desired probability error. Simple, isn’t it?
So what is the total error now?
Let us denote the probability of total error for a feature x to be P(E | x). Total error for a feature x would be the sum of all the probabilities of error for that feature x. Using simple integration, we can solve this and the result we get is:
P(E | x) = minimum (P(w1 | x) , P(w2 | x))
Therefore, our probability of total error is the minimum of the posterior probability for both the classes. We are taking the minimum of a class because ultimately we will give a decision based on the other class.
Popular AI and ML Blogs & Free Courses
Conclusion
We have looked in detail at the discrete applications of Bayesian Decision Theory. You now know Bayes Theorem and its terms. You also know how to apply Bayes Theorem in making a decision. You have also learned how to determine the error in the decision you have made.
If you’re interested to learn more about machine learning, check out IIIT-B & upGrad’s PG Diploma in Machine Learning & AI which is designed for working professionals and offers 450+ hours of rigorous training, 30+ case studies & assignments, IIIT-B Alumni status, 5+ practical hands-on capstone projects & job assistance with top firms.
Frequently Asked Questions (FAQs)
1. What is Bayes Theorem in probability?
In the field of Probability, Bayes Theorem refers to a mathematical formula. This formula is used to calculate the conditional probability of a specific event. Conditional probability is nothing but the possibility of occurrence of any particular event, which is based on the outcome of an event that has already taken place. In calculating the conditional probability of an event, Bayes Theorem considers the knowledge of all conditions related to that event. So, if we are already aware of the conditional probability, it becomes easier to calculate the reverse probabilities with the help of Bayes Theorem.
2. Is Bayes Theorem useful in machine learning?
Bayes Theorem is extensively applied in machine learning and artificial intelligence projects. It offers a way to connect a machine learning model with an available dataset. Bayes Theorem provides a probabilistic model that describes the association between a hypothesis and data. You can consider a machine learning model or algorithm as a specific framework that explains the structured associations in the data. So using Bayes Theorem in applied machine learning, you can test and analyze different hypotheses or models based on different sets of data and calculate the probability of a hypothesis based on its prior probability. The target is to identify the hypothesis that best explains a particular data set.
3. What are the most popular Bayesian machine learning applications?
In data analytics, Bayesian machine learning is one of the most powerful tools available to data scientists. One of the most fantastic examples of real-world Bayesian machine learning applications is detecting credit card frauds. Bayesian machine learning algorithms can help detect patterns that suggest potential credit card frauds. Bayes Theorem in machine learning is also used in advanced medical diagnosis and calculates the probability of patients developing a specific ailment based on their previous health data. Other significant applications include teaching robots to make decisions, predicting the weather, recognizing emotions from speech, etc.
RELATED PROGRAMS