Explore Courses
Liverpool Business SchoolLiverpool Business SchoolMBA by Liverpool Business School
  • 18 Months
Bestseller
Golden Gate UniversityGolden Gate UniversityMBA (Master of Business Administration)
  • 15 Months
Popular
O.P.Jindal Global UniversityO.P.Jindal Global UniversityMaster of Business Administration (MBA)
  • 12 Months
New
Birla Institute of Management Technology Birla Institute of Management Technology Post Graduate Diploma in Management (BIMTECH)
  • 24 Months
Liverpool John Moores UniversityLiverpool John Moores UniversityMS in Data Science
  • 18 Months
Popular
IIIT BangaloreIIIT BangalorePost Graduate Programme in Data Science & AI (Executive)
  • 12 Months
Bestseller
Golden Gate UniversityGolden Gate UniversityDBA in Emerging Technologies with concentration in Generative AI
  • 3 Years
upGradupGradData Science Bootcamp with AI
  • 6 Months
New
University of MarylandIIIT BangalorePost Graduate Certificate in Data Science & AI (Executive)
  • 8-8.5 Months
upGradupGradData Science Bootcamp with AI
  • 6 months
Popular
upGrad KnowledgeHutupGrad KnowledgeHutData Engineer Bootcamp
  • Self-Paced
upGradupGradCertificate Course in Business Analytics & Consulting in association with PwC India
  • 06 Months
OP Jindal Global UniversityOP Jindal Global UniversityMaster of Design in User Experience Design
  • 12 Months
Popular
WoolfWoolfMaster of Science in Computer Science
  • 18 Months
New
Jindal Global UniversityJindal Global UniversityMaster of Design in User Experience
  • 12 Months
New
Rushford, GenevaRushford Business SchoolDBA Doctorate in Technology (Computer Science)
  • 36 Months
IIIT BangaloreIIIT BangaloreCloud Computing and DevOps Program (Executive)
  • 8 Months
New
upGrad KnowledgeHutupGrad KnowledgeHutAWS Solutions Architect Certification
  • 32 Hours
upGradupGradFull Stack Software Development Bootcamp
  • 6 Months
Popular
upGradupGradUI/UX Bootcamp
  • 3 Months
upGradupGradCloud Computing Bootcamp
  • 7.5 Months
Golden Gate University Golden Gate University Doctor of Business Administration in Digital Leadership
  • 36 Months
New
Jindal Global UniversityJindal Global UniversityMaster of Design in User Experience
  • 12 Months
New
Golden Gate University Golden Gate University Doctor of Business Administration (DBA)
  • 36 Months
Bestseller
Ecole Supérieure de Gestion et Commerce International ParisEcole Supérieure de Gestion et Commerce International ParisDoctorate of Business Administration (DBA)
  • 36 Months
Rushford, GenevaRushford Business SchoolDoctorate of Business Administration (DBA)
  • 36 Months
KnowledgeHut upGradKnowledgeHut upGradSAFe® 6.0 Certified ScrumMaster (SSM) Training
  • Self-Paced
KnowledgeHut upGradKnowledgeHut upGradPMP® certification
  • Self-Paced
IIM KozhikodeIIM KozhikodeProfessional Certification in HR Management and Analytics
  • 6 Months
Bestseller
Duke CEDuke CEPost Graduate Certificate in Product Management
  • 4-8 Months
Bestseller
upGrad KnowledgeHutupGrad KnowledgeHutLeading SAFe® 6.0 Certification
  • 16 Hours
Popular
upGrad KnowledgeHutupGrad KnowledgeHutCertified ScrumMaster®(CSM) Training
  • 16 Hours
Bestseller
PwCupGrad CampusCertification Program in Financial Modelling & Analysis in association with PwC India
  • 4 Months
upGrad KnowledgeHutupGrad KnowledgeHutSAFe® 6.0 POPM Certification
  • 16 Hours
O.P.Jindal Global UniversityO.P.Jindal Global UniversityMaster of Science in Artificial Intelligence and Data Science
  • 12 Months
Bestseller
Liverpool John Moores University Liverpool John Moores University MS in Machine Learning & AI
  • 18 Months
Popular
Golden Gate UniversityGolden Gate UniversityDBA in Emerging Technologies with concentration in Generative AI
  • 3 Years
IIIT BangaloreIIIT BangaloreExecutive Post Graduate Programme in Machine Learning & AI
  • 13 Months
Bestseller
IIITBIIITBExecutive Program in Generative AI for Leaders
  • 4 Months
upGradupGradAdvanced Certificate Program in GenerativeAI
  • 4 Months
New
IIIT BangaloreIIIT BangalorePost Graduate Certificate in Machine Learning & Deep Learning (Executive)
  • 8 Months
Bestseller
Jindal Global UniversityJindal Global UniversityMaster of Design in User Experience
  • 12 Months
New
Liverpool Business SchoolLiverpool Business SchoolMBA with Marketing Concentration
  • 18 Months
Bestseller
Golden Gate UniversityGolden Gate UniversityMBA with Marketing Concentration
  • 15 Months
Popular
MICAMICAAdvanced Certificate in Digital Marketing and Communication
  • 6 Months
Bestseller
MICAMICAAdvanced Certificate in Brand Communication Management
  • 5 Months
Popular
upGradupGradDigital Marketing Accelerator Program
  • 05 Months
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in Corporate & Financial Law
  • 12 Months
Bestseller
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in AI and Emerging Technologies (Blended Learning Program)
  • 12 Months
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in Intellectual Property & Technology Law
  • 12 Months
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in Dispute Resolution
  • 12 Months
upGradupGradContract Law Certificate Program
  • Self paced
New
ESGCI, ParisESGCI, ParisDoctorate of Business Administration (DBA) from ESGCI, Paris
  • 36 Months
Golden Gate University Golden Gate University Doctor of Business Administration From Golden Gate University, San Francisco
  • 36 Months
Rushford Business SchoolRushford Business SchoolDoctor of Business Administration from Rushford Business School, Switzerland)
  • 36 Months
Edgewood CollegeEdgewood CollegeDoctorate of Business Administration from Edgewood College
  • 24 Months
Golden Gate UniversityGolden Gate UniversityDBA in Emerging Technologies with Concentration in Generative AI
  • 36 Months
Golden Gate University Golden Gate University DBA in Digital Leadership from Golden Gate University, San Francisco
  • 36 Months
Liverpool Business SchoolLiverpool Business SchoolMBA by Liverpool Business School
  • 18 Months
Bestseller
Golden Gate UniversityGolden Gate UniversityMBA (Master of Business Administration)
  • 15 Months
Popular
O.P.Jindal Global UniversityO.P.Jindal Global UniversityMaster of Business Administration (MBA)
  • 12 Months
New
Deakin Business School and Institute of Management Technology, GhaziabadDeakin Business School and IMT, GhaziabadMBA (Master of Business Administration)
  • 12 Months
Liverpool John Moores UniversityLiverpool John Moores UniversityMS in Data Science
  • 18 Months
Bestseller
O.P.Jindal Global UniversityO.P.Jindal Global UniversityMaster of Science in Artificial Intelligence and Data Science
  • 12 Months
Bestseller
IIIT BangaloreIIIT BangalorePost Graduate Programme in Data Science (Executive)
  • 12 Months
Bestseller
O.P.Jindal Global UniversityO.P.Jindal Global UniversityO.P.Jindal Global University
  • 12 Months
WoolfWoolfMaster of Science in Computer Science
  • 18 Months
New
Liverpool John Moores University Liverpool John Moores University MS in Machine Learning & AI
  • 18 Months
Popular
Golden Gate UniversityGolden Gate UniversityDBA in Emerging Technologies with concentration in Generative AI
  • 3 Years
Rushford, GenevaRushford Business SchoolDoctorate of Business Administration (AI/ML)
  • 36 Months
Ecole Supérieure de Gestion et Commerce International ParisEcole Supérieure de Gestion et Commerce International ParisDBA Specialisation in AI & ML
  • 36 Months
Golden Gate University Golden Gate University Doctor of Business Administration (DBA)
  • 36 Months
Bestseller
Ecole Supérieure de Gestion et Commerce International ParisEcole Supérieure de Gestion et Commerce International ParisDoctorate of Business Administration (DBA)
  • 36 Months
Rushford, GenevaRushford Business SchoolDoctorate of Business Administration (DBA)
  • 36 Months
Liverpool Business SchoolLiverpool Business SchoolMBA with Marketing Concentration
  • 18 Months
Bestseller
Golden Gate UniversityGolden Gate UniversityMBA with Marketing Concentration
  • 15 Months
Popular
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in Corporate & Financial Law
  • 12 Months
Bestseller
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in Intellectual Property & Technology Law
  • 12 Months
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in Dispute Resolution
  • 12 Months
IIITBIIITBExecutive Program in Generative AI for Leaders
  • 4 Months
New
IIIT BangaloreIIIT BangaloreExecutive Post Graduate Programme in Machine Learning & AI
  • 13 Months
Bestseller
upGradupGradData Science Bootcamp with AI
  • 6 Months
New
upGradupGradAdvanced Certificate Program in GenerativeAI
  • 4 Months
New
KnowledgeHut upGradKnowledgeHut upGradSAFe® 6.0 Certified ScrumMaster (SSM) Training
  • Self-Paced
upGrad KnowledgeHutupGrad KnowledgeHutCertified ScrumMaster®(CSM) Training
  • 16 Hours
upGrad KnowledgeHutupGrad KnowledgeHutLeading SAFe® 6.0 Certification
  • 16 Hours
KnowledgeHut upGradKnowledgeHut upGradPMP® certification
  • Self-Paced
upGrad KnowledgeHutupGrad KnowledgeHutAWS Solutions Architect Certification
  • 32 Hours
upGrad KnowledgeHutupGrad KnowledgeHutAzure Administrator Certification (AZ-104)
  • 24 Hours
KnowledgeHut upGradKnowledgeHut upGradAWS Cloud Practioner Essentials Certification
  • 1 Week
KnowledgeHut upGradKnowledgeHut upGradAzure Data Engineering Training (DP-203)
  • 1 Week
MICAMICAAdvanced Certificate in Digital Marketing and Communication
  • 6 Months
Bestseller
MICAMICAAdvanced Certificate in Brand Communication Management
  • 5 Months
Popular
IIM KozhikodeIIM KozhikodeProfessional Certification in HR Management and Analytics
  • 6 Months
Bestseller
Duke CEDuke CEPost Graduate Certificate in Product Management
  • 4-8 Months
Bestseller
Loyola Institute of Business Administration (LIBA)Loyola Institute of Business Administration (LIBA)Executive PG Programme in Human Resource Management
  • 11 Months
Popular
Goa Institute of ManagementGoa Institute of ManagementExecutive PG Program in Healthcare Management
  • 11 Months
IMT GhaziabadIMT GhaziabadAdvanced General Management Program
  • 11 Months
Golden Gate UniversityGolden Gate UniversityProfessional Certificate in Global Business Management
  • 6-8 Months
upGradupGradContract Law Certificate Program
  • Self paced
New
IU, GermanyIU, GermanyMaster of Business Administration (90 ECTS)
  • 18 Months
Bestseller
IU, GermanyIU, GermanyMaster in International Management (120 ECTS)
  • 24 Months
Popular
IU, GermanyIU, GermanyB.Sc. Computer Science (180 ECTS)
  • 36 Months
Clark UniversityClark UniversityMaster of Business Administration
  • 23 Months
New
Golden Gate UniversityGolden Gate UniversityMaster of Business Administration
  • 20 Months
Clark University, USClark University, USMS in Project Management
  • 20 Months
New
Edgewood CollegeEdgewood CollegeMaster of Business Administration
  • 23 Months
The American Business SchoolThe American Business SchoolMBA with specialization
  • 23 Months
New
Aivancity ParisAivancity ParisMSc Artificial Intelligence Engineering
  • 24 Months
Aivancity ParisAivancity ParisMSc Data Engineering
  • 24 Months
The American Business SchoolThe American Business SchoolMBA with specialization
  • 23 Months
New
Aivancity ParisAivancity ParisMSc Artificial Intelligence Engineering
  • 24 Months
Aivancity ParisAivancity ParisMSc Data Engineering
  • 24 Months
upGradupGradData Science Bootcamp with AI
  • 6 Months
Popular
upGrad KnowledgeHutupGrad KnowledgeHutData Engineer Bootcamp
  • Self-Paced
upGradupGradFull Stack Software Development Bootcamp
  • 6 Months
Bestseller
KnowledgeHut upGradKnowledgeHut upGradBackend Development Bootcamp
  • Self-Paced
upGradupGradUI/UX Bootcamp
  • 3 Months
upGradupGradCloud Computing Bootcamp
  • 7.5 Months
PwCupGrad CampusCertification Program in Financial Modelling & Analysis in association with PwC India
  • 5 Months
upGrad KnowledgeHutupGrad KnowledgeHutSAFe® 6.0 POPM Certification
  • 16 Hours
upGradupGradDigital Marketing Accelerator Program
  • 05 Months
upGradupGradAdvanced Certificate Program in GenerativeAI
  • 4 Months
New
upGradupGradData Science Bootcamp with AI
  • 6 Months
Popular
upGradupGradFull Stack Software Development Bootcamp
  • 6 Months
Bestseller
upGradupGradUI/UX Bootcamp
  • 3 Months
PwCupGrad CampusCertification Program in Financial Modelling & Analysis in association with PwC India
  • 4 Months
upGradupGradCertificate Course in Business Analytics & Consulting in association with PwC India
  • 06 Months
upGradupGradDigital Marketing Accelerator Program
  • 05 Months

Bayesian Network Example [With Graphical Representation]

Updated on 01 March, 2024

54.03K+ views
9 min read

In statistics, Probabilistic models are used to define a relationship between variables and can be used to calculate the probabilities of each variable. In many problems, there are a large number of variables. In such cases, the fully conditional models require a huge amount of data to cover each and every case of the probability functions which may be intractable to calculate in real-time. There have been several attempts to simplify the conditional probability calculations such as the Naïve Bayes but still, it does not prove to be efficient as it drastically cuts down several variables.

The only way is to develop a model that can preserve the conditional dependencies between random variables and conditional independence in other cases. This leads us to the concept of Bayesian Network and Bayesian Network Example. These Bayesian Networks help us to effectively visualize the probabilistic model for each domain and to study the relationship between random variables in the form of a user-friendly graph.

Learn ML Course from the World’s top Universities. Earn Masters, Executive PGP, or Advanced Certificate Programs to fast-track your career.

What are Bayesian Networks?

By definition, Bayesian Networks are a type of Probabilistic Graphical Model that uses the Bayesian inferences for probability computations. It represents a set of variables and its conditional probabilities with a Directed Acyclic Graph (DAG). They are primarily suited for considering an event that has occurred and predicting the likelihood that any one of the several possible known causes is the contributing factor.

Source

As mentioned above, by making use of the relationships which are specified by the Bayesian Network, we can obtain the Joint Probability Distribution (JPF) with the conditional probabilities. Each node in the graph represents a random variable and the arc (or directed arrow) represents the relationship between the nodes. They can be either continuous or discrete in nature.

In the above diagram A, B, C and D are 4 random variables represented by nodes given in the network of the graph. To node B, A is its parent node and C is its child node. Node C is independent of Node A.

Before we get into the implementation of a Bayesian Network, there are a few probability basics that have to be understood.

Local Markov Property

The Bayesian Networks satisfy the property known as the Local Markov Property. It states that a node is conditionally independent of its non-descendants, given its parents. In the above example, P(D|A, B) is equal to P(D|A) because D is independent of its non-descendent, B. This property aids us in simplifying the Joint Distribution. The Local Markov Property leads us to the concept of a Markov Random Field which is a random field around a variable that is said to follow Markov properties.

FYI: Free Deep Learning Course!

Conditional Probability

In mathematics, the Conditional Probability of event A is the probability that event A will occur given that another event B has already occurred. In simple terms, p(A | B) is the probability of event A occurring, given that event, B occurs. However, there are two types of event possibilities between A and B. They may be either dependent events or independent events. Depending upon their type, there are two different ways to calculate the conditional probability.

  • Given A and B are dependent events, the conditional probability is calculated as P (A| B) = P (A and B) / P (B)
  • If A and B are independent events, then the expression for conditional probability is given by, P(A| B) = P (A)

Joint Probability Distribution

Before we get into an example of Bayesian Networks, let us understand the concept of Joint Probability Distribution. Consider 3 variables a1, a2 and a3. By definition, the probabilities of all different possible combinations of a1, a2, and a3 are called its Joint Probability Distribution.

If P[a1,a2, a3,….., an] is the JPD of the following variables from a1 to an, then there are several ways of calculating the Joint Probability Distribution as a combination of various terms such as,

P[a1,a2, a3,….., an] = P[a1 | a2, a3,….., an] * P[a2, a3,….., an]

= P[a1 | a2, a3,….., an] * P[a2 | a3,….., an]….P[an-1|an] * P[an]

Generalizing the above equation, we can write the Joint Probability Distribution as,

P(Xi|Xi-1,………, Xn) = P(Xi |Parents(Xi ))

Bayesian Network Example

Let us now understand the mechanism of Bayesian Networks and their advantages with the help of a simple example. In this example, let us imagine that we are given the task of modeling a student’s marks (m) for an exam he has just given. From the given Bayesian Network Graph below, we see that the marks depend upon two other variables. They are,

  • Exam Level (e)– This discrete variable denotes the difficulty of the exam and has two values (0 for easy and 1 for difficult)
  • IQ Level (i) – This represents the Intelligence Quotient level of the student and is also discrete in nature having two values (0 for low and 1 for high)

Additionally, the IQ level of the student also leads us to another variable, which is the Aptitude Score of the student (s). Now, with marks the student has scored, he can secure admission to a particular university. The probability distribution for getting admitted (a) to a university is also given below.

In the above graph, we see several tables representing the probability distribution values of the given 5 variables. These tables are called the Conditional Probabilities Table or CPT. There are a few properties of the CPT given below –

  • The sum of the CPT values in each row must be equal to 1 because all the possible cases for a particular variable are exhaustive (representing all possibilities).
  • If a variable that is Boolean in nature has k Boolean parents, then in the CPT it has 2K probability values.

Coming back to our problem, let us first list all the possible events that are occurring in the above-given table.

  1. Exam Level (e)
  2. IQ Level (i)
  3. Aptitude Score (s)
  4. Marks (m)
  5. Admission (a)

These five variables are represented in the form of a Directed Acyclic Graph (DAG) in a Bayesian Network format with their Conditional Probability tables. Now, to calculate the Joint Probability Distribution of the 5 variables the formula is given by,

P[a, m, i, e, s]= P(a | m) . P(m | i, e) . P(i) . P(e) . P(s | i)

From the above formula,

  • P(a | m) denotes the conditional probability of the student getting admission based on the marks he has scored in the examination.
  • P(m | i, e) represents the marks that the student will score given his IQ level and difficulty of the Exam Level.
  • P(i) and P(e) represent the probability of the IQ Level and the Exam Level.
  • P(s | i) is the conditional probability of the student’s Aptitude Score, given his IQ Level.

With the following probabilities calculated, we can find the Joint Probability Distribution of the entire Bayesian Network.

Calculation of Joint Probability Distribution

Let us now calculate the JPD for two cases.

Case 1: Calculate the probability that in spite of the exam level being difficult, the student having a low IQ level and a low Aptitude Score, manages to pass the exam and secure admission to the university.

From the above word problem statement, the Joint Probability Distribution can be written as below,

P[a=1, m=1, i=0, e=1, s=0]

From the above Conditional Probability tables, the values for the given conditions are fed to the formula and is calculated as below.

P[a=1, m=1, i=0, e=0, s=0] = P(a=1 | m=1) . P(m=1 | i=0, e=1) . P(i=0) . P(e=1) . P(s=0 | i=0)

= 0.1 * 0.1 * 0.8 * 0.3 * 0.75

= 0.0018

Case 2: In another case, calculate the probability that the student has a High IQ level and Aptitude Score, the exam being easy yet fails to pass and does not secure admission to the university.

Also Read: Machine Learning Project Ideas & Topics

The formula for the JPD is given by

P[a=0, m=0, i=1, e=0, s=1]

Thus,

P[a=0, m=0, i=1, e=0, s=1]= P(a=0 | m=0) . P(m=0 | i=1, e=0) . P(i=1) . P(e=0) . P(s=1 | i=1)

= 0.6 * 0.5 * 0.2 * 0.7 * 0.6

= 0.0252

Hence, in this way, we can make use of Bayesian Networks and Probability tables to calculate the probability for various possible events that occur.

Conclusion

Bayesian Networks find extensive utility across various domains like Spam Filtering, Semantic Search, and Information Retrieval. A prime illustration of their effectiveness lies in predicting disease probabilities based on symptoms and other relevant factors. This concept of Bayesian Network is elucidated herein, exemplified through a practical instance known as the Bayesian Network Example.

If you are curious to master Machine learning and AI, boost your career with an Advanced Course on Machine Learning and AI with IIIT-B & Liverpool John Moores University.

Frequently Asked Questions (FAQs)

1. How are Bayesian networks implemented?

A Bayesian network is a graphical model where each of the nodes represent random variables. Each node is connected to other nodes by directed arcs. Each arc represents a conditional probability distribution of the parents given the children. The directed edges represent the influence of a parent on its children. The nodes usually represent some real-world objects and the arcs represent some physical or logical relationship between them. Bayesian networks are used in many applications like automatic speech recognition, document/image classification, medical diagnosis, and robotics.

2. Why is the Bayesian network important?

As we know, the Bayesian network is an important part of machine learning and statistics. It is used in data mining and scientific discovery. Bayesian network is a directed acyclic graph (DAG) with nodes representing random variables and arcs representing direct influence. Bayesian network is used in various applications like Text analysis, Fraud detection, Cancer detection, Image recognition etc. In this article, we will discuss Reasoning in Bayesian networks. Bayesian Network is an important tool for analyzing the past, predicting the future and improving the quality of decisions. Bayesian Network has its origins in statistics, but it is now being used by all professionals including Research Scientists, Operations Research Analysts, Industrial Engineers, Marketing Professionals, Business Consultants and even Managers.

3. What is a Sparse Bayesian Network?

A Sparse Bayesian Network (SBN) is a special kind of Bayesian network where the conditional probability distribution is a sparse graph. It might be appropriate to use a SBN when the number of variables is large and/or the number of observations is small. In general, Bayesian Networks are most useful when you are interested in explaining an observation or event by conditioning on a number of factors.