- Blog Categories
- Software Development
- Data Science
- AI/ML
- Marketing
- General
- MBA
- Management
- Legal
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- Software Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Explore Skills
- Management Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
Beginner’s Guide for Convolutional Neural Network (CNN)
Updated on 30 November, 2022
5.62K+ views
• 11 min read
Table of Contents
The last decade has seen tremendous growth in Artificial Intelligence and smarter machines. The field has given rise to many sub-disciplines that are specializing in distinct aspects of human intelligence. For instance, natural language processing tries to understand and model human speech, while computer vision aims to provide human-like vision to machines.
Since we’ll be talking about Convolutional Neural Networks, our focus will mostly be on computer vision. Computer vision aims to enable machines to view the world as we do and solve problems related to image recognition, image classification, and a lot more. Convolutional Neural Networks are used to achieve various tasks of computer vision. Also known as CNN or ConvNet, they follow an architecture that resembles the patterns and connections of neurons in the human brain and are inspired by various biological processes occurring in the brain to make communication happen.
The biological significance of a Convoluted Neural Network
CNNs are inspired by our visual cortex. It is the area of the cerebral cortex that is involved in visual processing in our brain. The visual cortex has various small cellular regions that are sensitive to visual stimuli.
This idea was expanded in 1962 by Hubel and Wiesel in an experiment where it was found that different distinct neuronal cells respond (get fired) to the presence of distinct edges of a specific orientation. For instance, some neurons would fire on detecting horizontal edges, others on detecting diagonal edges, and some others would fire when they detect vertical edges. Through this experiment. Hubel and Wiesel found out that the neurons are organized in a modular manner, and all the modules together are required for producing the visual perception.
This modular approach – the idea that specialized components inside a system have specific tasks – is what forms the basis of the CNNs.
With that settled, let’s move on to how CNNs learn to perceive visual inputs.
Convolutional Neural Network Learning
Images are composed of individual pixels, which is a representation between numbers 0 and 255. So, any image that you see can be converted into a proper digital representation by using these numbers – and that is how computers, too, work with images.
Here are some major operations that go into making a CNN learn for image detection or classification. This will give you an idea of how learning takes place in CNNs.
1. Convolution
Convolution can mathematically be understood as the combined integration of two different functions to find out how the influence of the different function or modify one another. Here’s how it can be defined in mathematical terms:
The purpose of convolution is to detect different visual features in the images, like lines, edges, colors, shadows, and more. This is a very useful property because once your CNN has learned the characteristics of a particular feature in the image, it can later recognize that feature in any other part of the image.
CNNs utilize kernels or filters to detect the different features that are present in any image. Kernels are just a matrix of distinct values (known as weights in the world of Artificial Neural Networks) trained to detect specific features. The filter moves over the entire image to check if the presence of any feature is detected or not. The filter carries out the convolution operation to provide a final value that represents how confident it is that a particular feature is present.
If a feature is present in the image, the result of the convolution operation is a positive number with a high value. If the feature is absent, the convolution operation results in either 0 or a very low-valued number.
Let’s understand this better using an example. In the below image, a filter has been trained for detecting a plus sign. Then, the filter is passed over the original image. Since a part of the original image contains the same features that the filter is trained for, the values in each cell where the feature exists is a positive number. Likewise, the result of a convolution operation will also result in a large number.
However, when the same filter is passed over an image with a different set of features and edges, the output of a convolution operation will be lower – implying there wasn’t any strong presence of any plus sign in the image.
So, in the case of complex images having various features like curves, edges, colours, and so on, we’ll need an N number of such feature detectors.
When this filter is passed through the image, a feature map is generated which is basically the output matrix that stores the convolutions of this filter over different parts of the image. In the case of many filters, we’ll end up with a 3D output. This filter should have the same number of channels as the input image for the convolution operation to take place.
Further, a filter can be slid over the input image at different intervals, using a stride value. The stride value informs how much the filter should move at each step.
The number of output layers of a given convolutional block can therefore be determined using the following formula:
2. Padding
One issue while working with convolutional layers is that some pixels tend to be lost on the perimeter of the original image. Since generally, the filters used are small, the pixels lost per filter might be a few, but this adds up as we apply different convolutional layers, resulting in many pixels lost.
The concept of padding is about adding extra pixels to the image while a filter of a CNN is processing it. This is one solution to help the filter in image processing – by padding the image with zeroes to allow for more space for the kernel to cover the entire image. By adding zero paddings to the filters, the image processing by CNN is much more accurate and exact.
Check the image above – padding has been done by adding additional zeroes at the boundary of the input image. This enables the capture of all the distinct features without losing any pixels.
3. Activation Map
The feature maps need to be passed through a mapping function that is non-linear in nature. The feature maps are included with a bias term and then passed through the activation (ReLu) function, which is non-linear. This function aims to bring some amount of nonlinearity into the CNN since the images that are being detected and examined are also non-linear in nature, being composed of different objects.
4. Pooling Stage
Once the activation phase is over, we move on to the pooling step, wherein the CNN down-samples the convolved features, which help save processing time. This also helps in reducing the overall size of the image, overfitting, and other issues that would occur if the Convoluted Neural Networks are fed with a lot of information – especially if that information is not too relevant in classifying or detecting the image.
Pooling is basically of two types – max pooling and min pooling. In the former, a window is passed over the image according to a set stride value, and at each step, the maximum value included in the window is pooled in the output matrix. In the min pooling, the minimum values are pooled in the output matrix.
The new matrix that’s formed as a result of the outputs is called a pooled feature map.
Out of min and max pooling, one benefit of max-pooling is that it allows the CNN to focus on a few neurons which have high values instead of focusing on all the neurons. Such an approach makes it very less likely to overfit the training data and makes the overall prediction and generalization go well.
5. Flattening
After the pooling is done, the 3D representation of the image has now been converted into a feature vector. This is then passed into a multi-layer perceptron to produce the output. Check out the image below to better understand the flattening operation:
As you can see, the rows of the matrix are concatenated into a single feature vector. If multiple input layers are present, all the rows are connected to form a longer flattened feature vector.
6. Fully Connected Layer (FCL)
In this step, the flattened map is fed to a neural network. The complete connection of a neural network includes an input layer, the FCL, and a final output layer. The fully connected layer can be understood as the hidden layers in Artificial Neural Networks, except, unlike hidden layers, these layers are fully connected. The information passes through the entire network, and a prediction error is calculated. This error is then sent as feedback (backpropagation) through the systems to adjust weights and improve the final output, to make it more accurate.
The final output obtained from the above layer of the neural network doesn’t generally add up to one. These outputs need to be brought down to numbers in the range of [0,1] – which will then represent the probabilities of each class. For this, the Softmax function is used.
The output obtained from the dense layer is fed to the Softmax activation function. Through this, all the final outputs are mapped to a vector where the sum of all the elements comes out to be one.
The fully connected layer works by looking at the previous layer’s output and then determining which feature most correlates to a specific class. Thus, if the program predicts whether or not an image contains a cat, it will have high values in the activation maps that represent features like four legs, paws, tail, and so on. Likewise, if the program is predicting something else, it will have different types of activation maps. A fully connected layer takes care of the different features that strongly correlate to particular classes and weights so that the computation between weights and the previous layer is accurate, and you get correct probabilities for distinct classes of output.
A quick summary of the working of CNNs
Here’s a quick summary of the entire process of how CNN works and helps in computer vision:
- The different pixels from the image are fed to the convolutional layer, where a convolution operation is performed.
- The previous step results in a convolved map.
- This map is passed through a rectifier function to give rise to a rectified map.
- The image is processed with different convolutions and activation functions for locating and detecting different features.
- Pooling layers are used to identify specific, distinct parts of the image.
- The pooled layer is flattened and used as an input to the fully connected layer.
- The fully connected layer calculates the probabilities and gives an output in the range of [0,1].
In Conclusion
The inner functioning of CNN is very exciting and opens a lot of possibilities for innovation and creation. Likewise, other technologies under the umbrella of Artificial Intelligence are fascinating and are trying to work between human capabilities and machine intelligence. Consequently, people from all over the world, belonging to different domains, are realizing their interest in this field and are taking the first steps.
Luckily, the AI industry is exceptionally welcoming and doesn’t distinguish based on your academic background. All you need is working knowledge of the technologies along with basic qualifications, and you’re all set!
If you wish to master the nitty-gritty of ML and AI, the ideal course of action would be to enroll in a professional AI/ML program. For instance, our Executive Programme in Machine Learning and AI is the perfect course for data science aspirants. The program covers subjects like statistics and exploratory data analytics, machine learning, and natural language processing. Also, it includes over 13 industry projects, 25+ live sessions, and 6 capstone projects. The best part about this course is that you get to interact with peers from across the world. It facilitates the exchange of ideas and helps learners build lasting connections with people from diverse backgrounds. Our 360-degree career assistance is just what you need to excel in your ML and AI journey!