- Blog Categories
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Gini Index for Decision Trees
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Brand Manager Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Search Engine Optimization
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
Big Data Applications in Agriculture: Role, Importance & Challenges
Updated on 02 November, 2022
10K+ views
• 5 min read
Table of Contents
Big data is an extensive collection of both structured and unstructured data that can be mined for information and analyzed to build predictive systems for better decision making. Besides the government, telecom, healthcare, marketing, education, and several industrial sectors, big data applications in agriculture are gaining momentum as technologies like livestock monitoring gadgets, drones, and soil sensors are generating large volumes of data to support data-driven farming. The ultimate goal is to help farmers, agriculturists, and scientists adopt beneficial farming practices.
What is big data?
When a question arises what is big data, it is a collection of large, complex, and unprocessed data is called ‘big data’. Due to complexity, big data cannot be processed by conventional data processing and data management applications and requires advanced tools that can analyze and process large volumes of data. Big data is characterized by some unique features – volume, variety, velocity, variability, veracity, and complexity. This vast reservoir of information must be studied, stored, and processed systematically for its applications in the public sector, scientific research, agriculture, industry, etc.
Applications of big data
Government – Data influx from sources such as sensors, satellites, CCTV and traffic cameras, calls, emails, social media, IT spaces, academia, etc. calls for efficient data storage and analysis for better governance and management of the public sector.
Banking – The big data applications in banking & insurance sector handles enormous amounts of data. Big data analytics are being used to store data, improve scalability, and derive business insights.
Healthcare – The problem of communication silos that plagues the healthcare industry can be considerably reduced with the application of big data-based protocols.
Telecom – Real-time analysis of big data provides useful predictions to derive business insights and strategies such as delivering revenue-generating services while keeping in mind network and customer considerations.
Explore our Popular Software Engineering Courses
Big data in agriculture
Big data applications in agriculture are a combination of technology and analytics. It entails the collection, compilation, and timely processing of new data to help scientists and farmers make better and more informed decisions. Farming processes are increasingly becoming data-enabled and data-driven, thanks to smart machines and sensors that generate vast amounts of farm data.
Traditional tools are being replaced by sensor-equipped machines that can collect data from their environments to control their behavior – such as thermostats for temperature regulation or algorithms for implementing crop protection strategies. Technology, combined with external big data sources like weather data, market data, or standards with other farms, is contributing to the rapid development of smart farming.
Role of big data in agriculture
Sustainability, global food security, safety, and improved efficiency are some of the critical issues that are being addressed by big data applications in agriculture. Undoubtedly, these global issues have extended the scope of big data beyond farming and now cover the entire food supply chain. With the development of the Internet of Things, various components of agriculture and the supply chain are wirelessly connected, generating data that is accessible in real-time.
Primary sources of data include operations, transactions, and images and videos captured by sensors and robots. However, extracting the full potential of this data repertoire lies in efficient analytics. The development of applications related to risk management, sensor deployment, predictive modeling, and benchmarking, has been possible due to big data.
In-Demand Software Development Skills
Stakeholders involved
Technology and input suppliers are the traditional players who offer their platforms and solutions to the farmers. Data privacy and security risks compel farmers to form coalitions to benefit from their data, creating a close and proprietary environment. Big data also attract start-ups, private firms, non-agricultural tech companies, and public institutions.
The organization of the stakeholders determines the infrastructure of big data solutions – either proprietary or an open-source system. The development of big data applications in agriculture will result in either the farmers becoming franchisers in integrated long supply chains or a scenario in which farmers collaborate with suppliers and the government to engage in short supply chains.
Read: Big Data Project Ideas and Topics
How is big data analytics transforming agriculture?
Boosting productivity – Data collected from GPS-equipped tractors, soil sensors, and other external sources has helped in better management of seeds, pesticides, and fertilizers while increasing productivity to feed the ever-increasing global population.
Access to plant genome information – This has allowed the development of useful agronomic traits.
Predicting yields – Mathematical models and machine learning are used to collate and analyze data obtained from yield, chemicals, weather, and biomass index. The use of sensors for data collection reduces erroneous manual work and provides useful insights on yield prediction.
Risk management– Data-driven farming has mitigated crop failures arising due to changing weather patterns.
Food safety – Collection of data relating to temperature, humidity, and chemicals, lowers the risk of food spoilage by early detection of microbes and other contaminants.
Savings – AI and data analytics-driven farming generate significant savings for the agriculture industry.
Explore Our Software Development Free Courses
Read: Big Data Applications That Surrounds Us
Challenges in implementing big data solutions in agriculture
- The generation of good-quality data is a critical concern in farm management information systems, and big real-time data does little to alleviate the problem.
- The strict application of data-ownership, privacy, and security issues impedes innovation.
- The large volume of unstructured and heterogeneous data demands domain experts and skilled data scientists.
- A successful business model calls for sustainable integration of data from all sources, which is often a Herculean task.
- The business models have to be such that they allow a fair share among the stakeholders.
- There is a challenge of developing affordable solutions for farmers in developing countries.
Summary
Big data analytics has influenced some of the most critical sectors of the economy and will continue to do so. The big data applications in agriculture are still in their early days, with challenges that need to be addressed. The full potential of big data will be realized if farmers and stakeholders come together to develop and adopt innovative crop management techniques that are data-driven and data-enabled.
If you are interested to know more about Big Data, check out our Advanced Certificate Programme in Big Data Programming.
Learn Software Development Courses online from the World’s top Universities. Earn Executive PG Programs, Advanced Certificate Programs or Masters Programs to fast-track your career.
Frequently Asked Questions (FAQs)
1. What are some of the use cases of Big Data in agriculture farms?
There are tons of Big Data applications, and each day, the options continue to rise. In agriculture, facilities like collecting real-time data, tracking physical data, etc., are extremely beneficial. One of the biggest use cases of Big Data is to feed a growing population, which is a graving concern. The yield has to increase from farmlands to keep up with the population. With the help of Big Data, farmers gain an insight into rainfall patterns, fertilizers, the water cycle, and more. Consequently, this leads to creating smart decisions. The second use case is the ethical use of pesticides since their overuse deteriorates the ecosystem. Big Data’s help to farmers is by suggesting pesticides the quantity they could use.
2. What is the future of Big Data in agriculture?
Gone are the days when success in agriculture was dependent on favorable conditions. Today, the ability of farmers to make efficient decisions has grown with the rise in Big Data. In addition, Cloud Computing has also significantly increased the use of computing power as storage and data centers. With the advent of pay-as-you-go, technology has come close. Farmers can use cloud-based apps to take information about the growing market demands and adjust their production accordingly. Moreover, these information metrics can also help them enhance productivity and contribute to bringing profit. Farmers can also micromanage how they deal with their activities, like planting crops and calculating profits.
3. What role does Big Data help in agricultural supply chain management?
Over one-third of food produced every year is not consumed by humans. This is one of the major reasons why the industry is witnessing a severe struggle to fill the existing gap between the rising demand and meeting the supply. To align with the growing demands, the food cycles in the market need to be reduced notably.