- Blog Categories
- Software Development
- Data Science
- AI/ML
- Marketing
- General
- MBA
- Management
- Legal
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Gini Index for Decision Trees
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Brand Manager Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- Software Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Explore Skills
- Management Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Search Engine Optimization
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
Big o notation in data structure: Everything to know
Updated on 26 September, 2022
6.98K+ views
• 7 min read
Table of Contents
Big O Notation in a data structure is used for determining the efficiency of an algorithm, the amount of time it takes to run the function with the growth of the input, and how well the function scales. Measuring this efficiency can be divided into two parts, namely, space complexity and time complexity.
Big O notation refers to the mathematical notation that acts as a limiting factor of any function when an argument is more prone to lean towards a specific value or infinity. It belongs to the category of mathematical notations invented by Edmund Landau, Paul Bachmann, and others. Hence, it is collectively termed the Bachmann–Landau notation or the asymptotic notation.
As per the mathematical deduction, two functions, f(n) and g(n) are defined on a set of positive or real numbers that are not bound. Here, g(n) is strictly positive for every big value of n. It can be written in the following fashion:
f(n) = O(g(n)) in which n tends to infinity (n → ∞)
However, here, the supposition of n to infinity is not exclusively defined, and the above expression can therefore be written as:
f(n) = O(g(n))
Here, f and g are the necessary functions that start from positive integers to real numbers that aren’t non-negative.
Hence, large n values are denoted by the Big O asymptotic.
Properties of Big O Notation in Data Structure
The Big O algorithm in data structure has quite a few mandatorily required properties. The said essential properties of the Big O Notation are as follows:
- Summation Function:
If f(n) = f1(n) + f2(n) + — + fm(n) and fi(n)≤ fi+1(n) ∀ i=1, 2,–, m,
then O(f(n)) = O(max(f1(n), f2(n), –, fm(n))). - Logarithmic Function:
If f(n) = logan and g(n)=logbn,
then O(f(n))=O(g(n)) - Constant Multiplication:
If f(n) = c.g(n), then O(f(n)) = O(g(n)) in which c is a nonzero constant. - Polynomial Function:
If f(n) = a0 + a1.n + a2.n2 + — + am.nm,
then O(f(n)) = O(nm).
Learn Software Development Courses online from the World’s top Universities. Earn Executive PG Programs, Advanced Certificate Programs or Masters Programs to fast-track your career.
Explore our Popular Software Engineering Courses
Here, while addressing Big O, every single log function increases similarly.
Importance Of Big O Notation In Runtime Analysis Of Algorithms
The complexities of the worst-case running time of the algorithm are used to draw comparisons and calculate, especially in the case of analyzing the performance of an algorithm. The order of O(1), depicted as the Constant Running Time, is the algorithm’s fastest running time – the time that the algorithm takes is the same for various input sizes. It is important to note that the ideal runtime of an algorithm is the constant running time, which is very rarely achieved because the algorithm’s runtime depends on the input size of n.
For example:
As mentioned above, an algorithm’s runtime performance is majorly dependent on the input size of n. Let us elucidate this fact with a few mathematical examples to make the runtime analysis of an algorithm for various sizes of n:
- n = 20
log (20) = 2.996;
20 = 20;
20 log (20) = 59.9;
202 = 400;
220 = 1084576;
20! = 2.432902 + 1818; - n = 10
log (10) = 1;
10 = 10;
10 log (10) = 10;
102 = 100;
210 = 1024;
10! = 3628800;
The runtime performance of an algorithm is calculated similarly.
Here are a few other algorithmic examples of runtime analysis –
- When it comes to Linear Search, the runtime complexity is O(n).
- The runtime complexity is O(log n) for binary search.
- For Selection Sort, Bubble Sort, Bucket Sort, Insertion Sort, the runtime complexity is O(n^c).
- When it comes to Exponential algorithms such as Tower of Hanoi, the runtime complexity is O(c^n).
- For Merge SortSort and Heap Sort, the runtime complexity is O(n log n).
How does Big O analyze space complexity?
Determining both space and runtime complexity for an algorithm is an essential step. This is because we can determine the execution time that an algorithm takes by analyzing the runtime performance of the algorithm and the memory space the algorithm is taking through the analysis of the space complexity of the algorithm. Therefore, to measure the space complexity of an algorithm, we must compare the worst-case space complexity performance of the algorithm.
For determining the space complexity of an algorithm, we must follow these two tasks –
Task 1: It is vital to implement the program for a particular algorithm.
Task 2: It is essential to know the size of the input n to determine the memory each item will hold.
These two essential tasks require to be accomplished before calculating the space complexity for an algorithm.
Examples of Space Complexity Algorithms
There are many examples of algorithms with space complexity, some of which have been mentioned below for a better understanding of this type of algorithm:
- For Bubble sort, Linear Search, Selection sort, Insertion sort, Heap sort, and Binary Search, the space complexity is O(1).
- The space complexity is O(n+k) when it comes to radix sort.
- The space complexity is O(n) for quick SortSort.
- The space complexity is O(log n) for merge sort.
Example of Big O Notation in C
It is a fact that Big O notation is primarily used in Computer Science for determining the complexity or performance of an algorithm. This notation provides us with the ability to classify the behavior of algorithms based on the growth of the memory space or execution time requirements when the extent of the input data becomes large. It is not designed to predict the actual memory usage or execution time but for comparing algorithms and then selecting the best amongst them for the job. It is not language-specific but is also implemented in C.
Below, you will find the selection sort algorithm in C where the worst-case complexity (Big O notation) of the algorithm has been calculated:-
for(int i=0; i<n; i++)
{
int min = i;
for(int j=i; j<n; j++)
{
if(array[j]<array[min])
min=j;
}
int temp = array[i];
array[i] = array[min];
array[min] = temp;
}
To analyze the algorithm:
- It can already be denoted that the range of the for outer loop is i < n, which states that the order of the loop is O(n).
- Next, we can identify that it is also O(n) as j < n for the inner for loop.
- The constant is ignored, even if the average efficiency is found n/2 for a constant c. So, the order is O(n).
- After multiplying the order of the inner loop and the outer loop, the runtime complexity achieved is O(n^2).
Other algorithms in C can be easily implemented, where the complexities can be easily analyzed and determined similarly.
Usage Of Big O Notation
There are two main areas where Big O Notation is applied:-
- Mathematics: The Big O Notation is quite commonly used in the field of mathematics to describe how a finite series closely approximates a function, especially when it comes to the cases of an asymptotic expansion or truncated Taylor series.
- Computer science: It is a well-established fact that the Big O notation is mostly used in the field of computer science because of its usefulness in the analysis of algorithms
However, in both applications, the function g(x) appearing within the O(·) is often chosen to be possibly the most simple if lower order terms and constant factors are omitted.
There are two other usages of this notation that are formally close but relatively different. They are:-
- Infinite asymptotics
- Infinitesimal asymptotics.
However, this distinction is not in principle, in application only with the formal definition for the “Big O” being the exact same for both cases. The only difference is the limits for the argument of the function.
Popular Articles related to Software Development
Conclusion
In conclusion, we can say that Big Data plays an integral role in data structures, and having in-depth, comprehensive knowledge about Big O notation is an excellent skill set to possess. It is in high demand in the job sector and can be potentially a great choice for a career path. upGrad’s Advanced Certificate Programme in Big Data will give you the leverage you need to boost your career. It will introduce you to top professional skills like Data Processing with PySpark, Data Warehousing, MapReduce, Big Data Processing on the AWS Cloud, Real-time Processing, etc.
Frequently Asked Questions (FAQs)
1. How does the Big O Notation bind function?
The Big O notation is used for defining an algorithm’s upper bounds thus it binds functions from above.
2. How can Big O multiply?
Big O can be multiplied if the time complexities are multiplied.
3. What is the difference between Big O and Small O?
Big O is asymptotically tight, whereas the upper bound of Small O is not asymptotically tight.