- Blog Categories
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Gini Index for Decision Trees
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Brand Manager Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Search Engine Optimization
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
Building Blocks of Neural Networks: Components of Neural Networks Explained
Updated on 24 November, 2022
12.01K+ views
• 8 min read
Introduction
In recent years, Deep learning popularity has taken an abrupt slope in terms of usage and application in every sector of the industry. Whether it is image recognition, speech generation, translation, and many more such applications, almost every company wants to integrate this technology into one or the other products they are building. The reason for this supremacy over traditional machine learning algorithms is the accuracy and efficient performance provided by these Deep Learning models.
Top Machine Learning and AI Courses Online
Though the infrastructure plays an important role in delivering these results, the core code does all the processing which is enclosed in a Neural Network. Let’s explore the various components of this network and then we will look at some fundamental units using these components.
Trending Machine Learning Skills
Enrol for the Machine Learning Course from the World’s top Universities. Earn Masters, Executive PGP, or Advanced Certificate Programs to fast-track your career.
Must Read: Neural Network Model Introduction
Various Components of Neural Network
Neuron
The basic building block of a neural network is a neuron. This concept is very much similar to the actual neural network in our human brains. This artificial neuron takes all the inputs, aggregates them, and then based on a function gives the output of the neuron.
A neural network comprises many such neurons interconnected with each other in the form of layers known as the input, hidden, and output layers. This network enables us to map any kind of complex data pattern to a mathematical function, and this can be verified mathematically using the universal approximation theorem.
Weights
The model can have weights so that high values can be suppressed using negative values. You can interpret this by taking an example of a smartphone purchase. The higher the price, the lower will be chances of purchasing that smartphone, but if our model adds up all the values and compares it with the threshold, the wrong prediction may be done. To nullify this effect, negative weights should reduce the sum and get the right prediction.
Activation Function
There was a mention in the neuron definition that based on a function, the neuron will output the result either to the next layer if it’s part of the input or hidden layer or used for further processing in the output layer.
This function is called the activation function, and this defines the state of the neuron. There are a lot of activation functions available in the market that can do the job but it all depends on the use case. Examples are the sigmoid function, tanh function, the softmax function, Relu (rectified linear unit), leaky Relu, and many more.
FYI: Free nlp course!
Learning Rate
It can control the pace of the weight update. Consider two cases where the learning rate acts as an important factor. If an input feature has more sparse values, then we need to update the weights more frequently, and that’s why a larger learning rate is desired. Similarly, a low learning rate can work in dense data.
Let’s look at some fundamental units making use of these components in larger neural networks.
MP Neuron
This is the most basic form of Artificial Neuron that calculates the input sum and then passes it to the activation function to get the final output. Here is a visual of this:
The limiting factor to this is that the inputs should be binary and no real number is allowed. That means if we want to use a dataset with different values then that needs to be scaled to binary to be passed to the model.
The outputs of this model are also binary, which makes it hard to interpret the quality of results. The inputs don’t have any weights, so we can’t control how much contribution a feature will have to the result.
Perceptron Neuron
One of the significant drawbacks of MP neurons was that it can’t accept real numbers as inputs, which can lead to undesirable results. It means that if we want to pass an input feature to this neuron with real numbers, it needs to be downscaled to 1’s or 0’s. In this neuron model, there is no such limitation on inputs, but passing standardized inputs will give better results in less time as the aggregation of inputs would be fair for all the feature values.
A learning algorithm is also introduced, which makes this model even more robust to new inputs. The algorithm updates the weights applied to each input based on the loss function. The loss function determines the difference between the actual value and the predicted value by the model. Squared error loss is one such popular function used in deep learning models.
As the Perception neuron also gives out binary output, the loss can be zero or one. It means we can define the loss function of this type in a more compact way as “When the prediction is not equal to the true value, the loss is one and weights need to be updated else zero loss and no update needed”. The updates in the weights are done in the following way:
w = w + x if w.x < 0
w = w – x if w.x >= 0
Read: TensorFlow Object Detection Tutorial For Beginners
Sigmoid Neuron
The perceptron neuron seems promising as compared to the MP neuron, but there are still some issues that need to be addressed. One major flaw in both of them is that they only support binary classification. Another issue is the harsh classification boundaries that only output whether a particular case is possible. It doesn’t allow flexibility in predictions in the form of probabilities that are more interpretable than binary outputs.
To resolve all these issues, the Sigmoid neuron was introduced, which can be used for multi-classification and doing regression tasks. This model uses the sigmoid family of functions or logarithmic:
y = 1 / (1 + e^ (-w.x + b))
If we plot this function then it would take the ‘S’ shape where its position can be adjusted by using different values of ‘b’ which is the intercept of this curve. The output of this function always lies between 0 and 1, no matter how many inputs are passed. This gives out the probability of the class, which is better than rigid outputs. This also means we can have multiple classifications or perform regression.
The learning algorithm for this differs from the previous ones. Here the weights and bias are updated according to the derivative of the loss function.
This algorithm is commonly known as the Gradient Descent rule. The derivation and detailed explanation for this is quite lengthy and mathematical, therefore it is currently out of this article. In simple terms, it states that to get an optimal minima for the derivative of the loss function, we should move in a direction opposite to the gradient.
Popular AI and ML Blogs & Free Courses
Conclusion
This was a brief introduction to Neural Networks. We saw the various basic components such as the neuron which acts as a mini-brain and processes the inputs, weights that allow to balance out values, learning rate to control how the pace of weights update and the activation function to fire up the neurons.
We also saw how the basic building block neuron can take different forms on increasing the complexity of the task. We started with the most basic form in the MP neuron, then eliminating some issues in the Perceptron neuron, and later on adding support for regression and multi-class classification tasks in the sigmoid neuron.
If you’re interested to learn more about machine learning, check out IIIT-B & upGrad’s PG Diploma in Machine Learning & AI which is designed for working professionals and offers 450+ hours of rigorous training, 30+ case studies & assignments, IIIT-B Alumni status, 5+ practical hands-on capstone projects & job assistance with top firms.
Frequently Asked Questions (FAQs)
1. What is a neural network in AI?
A neural network or artificial neural network (ANN) refers to a computational network inspired by biology, i.e., the neural networks present in the human brain. Just like the human brain consists of billions of neurons that form an interconnected network, the artificial neural network also comprises neurons that are interconnected at various layers. These neurons are also known as nodes in the realm of artificial intelligence. The concept of artificial neural networks is developed to impart computers human-like abilities to comprehend things and form decisions; the nodes or computers here are programmed to act like interconnected cells of our brain.
2. What skills are needed to get a job in AI?
Since AI is a highly specialized field of computer science, those who aspire to build a career in AI must possess certain educational qualifications apart from skills like analytical thinking, design abilities, and problem-solving capabilities. Highly successful AI professionals also have the foresight of innovations in technology which enable modern businesses with cost-effective and efficient software solutions needed to stay ahead of the competition. Needless to say, excellent verbal and written communication skills are a must. A technical educational background is necessary to appreciate AI projects' logical, engineering, and technological perspectives.
3. What are the general prerequisites for learning neural networks?
To work on any large-scale artificial intelligence project, it will be expected of you to have a clear understanding of the fundamentals of artificial neural networks. To build your basic concepts of neural networks, first and foremost, you must read ample books, articles, and news articles. Generally speaking, among the prerequisites for studying the concepts of neural networks, mathematics plays a vital role, especially, things like statistics, linear algebra, calculus, probability. Apart from that, computer programming skills in languages like Python, Java, R, and C++, will also be necessary. Intermediate programming skills can also be of great help here.
RELATED PROGRAMS