- Blog Categories
- Software Development
- Data Science
- AI/ML
- Marketing
- General
- MBA
- Management
- Legal
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- Software Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Explore Skills
- Management Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
4 Built-in Data Structures in Python: Dictionaries, Lists, Sets, Tuples
Updated on 08 January, 2024
6.1K+ views
• 9 min read
In this article, we’ll be focusing on the data structures in Python and help you in understanding the topic clearly. You’ll find out what they are and how they function. We’ve also shared numerous examples to ensure you don’t have any doubts regarding any topics we’ve shared here.
So, without further ado, let’s get started.
What are Data Structures?
Data structures let you organize and manage your data effectively and efficiently. They enhance the accessibility of your data. Modifying the stored data becomes quite more straightforward as well if you have suitable data structures in place. They enable you to organize and store the data so you can perform operations on the same later on without facing any kind of difficulties.
Python has two types of data structures. The data structures Python supports implicitly are Set, Dictionary, List, and Tuple. These are the built-in data structures of Python.
Then there are data structures you can create yourself to have better control over the functionality. These are user-defined data structures, and they include Linked Lists, Graphs, Trees, Stacks, Queues, and HashMaps. The user-defined data structures are available in other programming languages as well.
Read more: 6 Most Commonly Used Data Structures in R
Built-in Data Structures in Python
Python has multiple built-in data structures. These integrated data structures help you in solving the programming problems fast and with much ease. As we mentioned earlier, Python has the following integrated data structures:
- Dictionaries
- Lists
- Sets
- Tuples
Let’s discuss each one of them in detail:
1. Dictionaries
We use dictionaries to store key-value pairs. Just like a physical dictionary has a word stored along with its meaning, a dictionary in Python stores key-value pairs. The terms are the keys, whereas the various meanings associated with those words are the values. With the value, you can access the keys.
You can create a dictionary with flower braces. You can also use the dict() function for this purpose. Here is an example:
my_dict = {} #empty dictionary
print(my_dict)
my_dict = {1: ‘A’, 2: ‘B’} #dictionary with elements
print(my_dict)
The output of the above code:
{}
{1: ‘A’, 2: ‘B’}
Our learners also read: Free online python course for beginners!
You can change the values of the dictionary through the keys. You’d have first to access the keys to change the values. Once you’ve located the keys, you just have to add the required key-value pair for getting the desired result.
my_dict = {‘First’: ‘A’, ‘Second’: ‘B’}
print(my_dict)
my_dict[‘Second’] = ‘C++’ #changing element
print(my_dict)
my_dict[‘Third’] = ‘Ruby’ #adding key-value pair
print(my_dict)
The output of the above code:
{‘First’: ‘A’, ‘Second’: ‘B’}
{‘First’: ‘A’, ‘Second’: ‘C’}
{‘First’: ‘A’, ‘Second’: ‘C’, ‘Third’: ‘D’}
You can delete the values in your dictionary by using the pop() function. The pop() function returns the value that you had deleted. You can retrieve a key-value pair through the popitem() function. It returns the tuple of the pair. You can clear the whole dictionary as well by using the clear() function. Here’s the example:
my_dict = {‘First’: ‘A’, ‘Second’: ‘B’’, ‘Third’: ‘C’}
a = my_dict.pop(‘Third’) #pop element
print(‘Value:’, a)
print(‘Dictionary:’, my_dict)
b = my_dict.popitem() #pop the key-value pair
print(‘Key, value pair:’, b)
print(‘Dictionary’, my_dict)
my_dict.clear() #empty dictionary
print(‘n’, my_dict)
The output of the above code:
Value: C
Dictionary: {‘First’: ‘A’, ‘Second’: ‘B’}
Key, value pair: (‘Second’, ‘B’)
Dictionary {‘First’: ‘A’}
{}
Also read: Python Project Ideas and Topics
2. Lists
We use lists to store data sequentially. Every element of the list has an address, which is also called an index. The index value of a list goes from 0 to the last element present in your list, and its name is positive indexing. Similarly, when you go back from the last element to the first one and count from -1, it’s called negative indexing.
You can create a list by using square brackets and add elements into them as you require. If you leave the brackets empty, the list wouldn’t have any elements, and it would be empty as well. Here’s an example of a list:
my_list = [] #create empty list
print(my_list)
my_list = [A, B, C, ‘example’, Z] #creating list with data
print(my_list)
The output of the above code:
[]
[A, B, C, ’example’, Z]
You can add elements to your list by using the insert(), extent(), and append() functions. The insert() function adds those elements which were passed to the index value. The insert() function increases the size of the list as well.
With the append() function, you can add all the elements passed to it as a single element. On the other hand, the extend() function can add the elements one-by-one.
Here is an example:
my_list = [A, B, C]
print(my_list)
my_list.append([555, 12]) #add as a single element
print(my_list)
my_list.extend([234, ‘more_example’]) #add as different elements
print(my_list)
my_list.insert(1, ‘insert_example’) #add element i
print(my_list)
Output of the above code:
[A, B, C]
[A, B, C, [555, 12]]
[A, B, C, [555, 12], 234, ‘more_example’]
[A, ‘insert_example’, B, C, [555, 12], 234, ‘more_example’]
While working with lists, you would encounter the need to remove some elements as well. You can use the ‘del’ keyword. It’s a built-in keyword of Python and it doesn’t return anything back. If you want an element back, you’d have to use the pop() function and to remove an element through its value, you’ll have to use the remove() function. Here’s the example:
my_list = [A, B, C, ‘example’, Z, 10, 30]
del my_list[5] #delete element at index 5
print(my_list)
my_list.remove(‘example’) #remove element with value
print(my_list)
a = my_list.pop(1) #pop element from list
print(‘Popped Element: ‘, a, ‘ List remaining: ‘, my_list)
my_list.clear() #empty the list
print(my_list)
The output of the above code:
[A, B, C, ‘example’, Z, 30]
[A, B, C, Z, 30]
Popped Element: 2 List remaining: [A, C, Z, 30]
[]
You can pass the index values in Python and get the required values.
my_list = [A, B, C, ‘example’, Z, 10, 30]
for element in my_list: #access elements one by one
print(element)
print(my_list) #access all elements
print(my_list[3]) #access index 3 element
print(my_list[0:2]) #access elements from 0 to 1 and exclude 2
print(my_list[::-1]) #access elements in reverse
The output of the above code:
A
B
C
example
Z
10
30
[A, B, C, ‘example’, Z, 10, 30]
example
[A, B]
[30, 10, Z, ‘example’, 3, 2, 1]
Explore our Popular Data Science Certifications
3. Sets
A collection of unique and unordered items is called a set. So, if you repeat the data due to some reason, it would appear in the set only once. Sets in Python are similar to the sets you read about in mathematics. From their properties to their functions, you’ll find plenty of similarities among them.
You can create a set by using the flower braces and passing its values. Here’s an example:
my_set = {A, B, C, D, E, E, E} #create set
print(my_set)
The output of the above code:
{A, B, C, D, E}
Like we mentioned earlier, you can perform all the functions of sets you perform in arithmetics in Python’s sets. With the union() function, you can combine the data present in two sets. The intersection() function gives you the data that’s present in both of the mentioned sets.
You have the difference() function that lets you delete the data available in both of the sets and gives you the data which isn’t common among them. The symmetric_difference() function gives you the data remaining in those sets.
my_set = {A, B, C, D}
my_set_2 = {C, D, E, F}
print(my_set.union(my_set_2), ‘———-‘, my_set | my_set_2)
print(my_set.intersection(my_set_2), ‘———-‘, my_set & my_set_2)
print(my_set.difference(my_set_2), ‘———-‘, my_set – my_set_2)
print(my_set.symmetric_difference(my_set_2), ‘———-‘, my_set ^ my_set_2)
my_set.clear()
print(my_set)
The output of the above code:
{A, B, C, D, E, F} ———- {A, B, C, D, E, F}
{C, D} ———- {C, D}
{A, B} ———- {A, B}
{A, B, E, F} ———- {A, B, E, F}
set()
Also read: Python Developer Salary in India
Top Data Science Skills to Learn
upGrad’s Exclusive Data Science Webinar for you –
How upGrad helps for your Data Science Career?
4. Tuples
Tuples are similar to lists, but once you enter data in a tuple, you can’t change it unless it is mutable. Understanding them can be a little tricky, but don’t worry, our example code might help you in that regard. You can create a tuple with the help of the tuple() function.
my_tuple = (A, B, C) #create tuple
print(my_tuple)
The output of the above code:
(A, B, C)
The method for accessing values in tuples is the same as in lists.
my_tuple2 = (A, B, C, ‘Upgrad’) #access elements
for x in my_tuple2:
print(x)
print(my_tuple2)
print(my_tuple2[0])
print(my_tuple2[:])
The output of the above code:
A
B
C
Upgrad
(A, B, C, ‘Upgrad’)
A
(A, B, C, ‘Upgrad’)
Read our popular Data Science Articles
Conclusion
Now you must’ve grown familiar with the various data structures in Python. We hope you found this article useful. Data structures play a significant role in helping you with organizing, managing, and accessing your data. There are plenty of options to choose from, and each one of them has its particular uses.
Learn Data Science Courses online at upGrad
If you want to find out more about Python and data structures, you should take a look at our courses.
If you are curious to learn about python, everything about data science, check out IIIT-B & upGrad’s PG Diploma in Data Science which is created for working professionals and offers 10+ case studies & projects, practical hands-on workshops, mentorship with industry experts, 1-on-1 with industry mentors, 400+ hours of learning and job assistance with top firms.
Check out all trending Python tutorial concepts in 2024.
Frequently Asked Questions (FAQs)
1. When is the dictionary data type used?
Dictionary can be defined as a valuable data type being used in Python as a collection of data that is stored in the pairs of keys and values. Now, values of the dictionary can be of any data type, but keys have to be an immutable data type like tuple, integer, or string.
Dictionaries are found to be pretty handy when you wish to find a value instantly without going through the entire collection of data. Other than that, a dictionary is also very useful when the order of data is not important. Dictionary data type is preferred when memory consideration is not an important factor because they tend to take up more space as compared to lists and tuples.
2. What is the difference between lists and tuples?
List and tuples are both sequence data types that are useful for storing the collection of data in Python. The most significant difference between both of them is that lists are mutable, while tuples are immutable. On top of that, the implication of iterations is much faster in tuples as compared to that in lists.
If you wish to perform insertion and deletion operations, then lists make it easy for you. At the same time, elements can be accessed better in tuples. Another important factor that determines the use of any data structure is memory. Here, lists tend to consume more memory as compared to tuples.
3. How are sets different from lists?
Lists are considered to be the most powerful tool in Python as they don’t always have to be homogeneous. Both lists and sets can contain all sorts of data types. Now, lists can contain duplicate elements, but sets can never contain duplicates, and they will simply disappear from the set.
The order of elements is maintained in lists, but sets can never maintain the order of elements. As lists take up plenty of computational space, they end up taking a huge amount of time. On the other hand, sets make use of hashing for performing look-ups and end up being way faster than lists.