- Blog Categories
- Software Development
- Data Science
- AI/ML
- Marketing
- General
- MBA
- Management
- Legal
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- Software Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Explore Skills
- Management Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
5 Reasons Business Analytics is Crucial For Modern Banking
Updated on 28 November, 2022
9.29K+ views
• 8 min read
With the emergence of analytics banking has become more personal, it has a much bigger impact in shaping consumer culture. Banks can now identify and target prospective clients with more confidence as it can locate customer spending patterns and investment or loan history to convert into usable insight. With the analytical market surveys, fiscal research, banks can connect a consumer’s business objective with their banking needs to make way for a more profitable upgrade or loan package for the customer.
In progressive banking, the entire pattern is a lot more flexible and customisable for individual needs, and it has proven to be beneficial for banks. The tools for analytics are more focused and direct now, aimed at identifying retail behaviour or investment planning and shortlisting high-value customer profiles.
Simply put, losing customers costs the bank money because even if it gets three new customers in exchange for one, retaining new customers is a lot more expensive than holding on to the existing one.
Learn Online MBA Programs from the World’s top Universities. Earn Masters, Executive PGP, or Advanced Certificate Programs to fast-track your career.
This is where analytics comes into play, it can predict consumer priorities, and can foresee upcoming financial needs, and offer value-based prospects and several upgrades, benefits, credit offers to help out with their economic planning. So, how exactly does analytics help banking? Let’s find out:
Why Analytics For Modern Banking
1. Knowing Customer’s Priorities
For obvious reasons analytics help the banking industry detect the buying and investing patterns of customers which in turn, helps them in curating their policies. Zeroing in on the right product and monitoring consumer usage is crucial and one of the most challenging areas in the modern banking sector, when the urban spending habits are so wide-ranging and diverse.
Analytics can help banks classify customers according to their economic paradigms, which makes a whole lot of difference in determining their needs and challenges. Moreover, it aids in educating the banks about their customers, so they can tailor offers, upgrades and other details in a fashion that’s relevant to them, and appeals to them individually, leading to growth in productivity.
Advanced or predictive analysis can determine what the customer will need next or what they are not interested in. It is important to note that in customer care, communication and response channels are constantly evolving and only increasing in number.
This puts the personal banker in direct touch with their clients, this means the challenges are higher; a financial provider will have to make real-time assessments, based on their consumer’s credit history or retail behaviour. In this scenario, in order to improve customer service and make it more efficient, a specialized form of customer-serving analytic set-up is the need of the hour for banking.
Learn more: What is Customer Analytics and Why it matters?
2. Fraud Detection
Analytics deals with data and it has the potential to actually foresee fraudulence based on the patterns and investment behaviour of customers. This is especially significant in the urban milieu when every spending or investment is so closely monitored by banks, it also equips them with a deep knowledge about their clients’ financial capabilities and potential future needs.
Customers who have loan accounts, mutual fund accounts or use credit cards have a usage pattern which can be studied by analytics and it can determine if any major imbalance is an indicator of fraud. With the emergence of big data, most banks rely upon monitoring systems which are operated by human experts.
With the digital boom, modes of fraudulent activities have become manifold, cyber fraud, especially, is a really tricky area. With the help of analytics, a bank can probe oddities in purchase habits or investment decisions. Analytics is also very useful in studying the gap between several transactions and determining their causes, their correlation to past or future transactions, which can make for a case study to figure out if there’s fraudulence afoot.
Experts believe that most fraudsters leave behind a trail of breadcrumb in the form of data or information, which can be uncovered by a deep dive into their patterns, especially in tax-related fraud.
3. Strengthening the Customer Base
The key to making your customer base grow is to retain customers while you simultaneously get new ones. Analytics are very useful in optimized selection which helps banks identify and high-value consumers and cater to what they are looking for. This is also about creating new opportunities and options for your existing customer base; this is a direct means of bringing in more money and also a way to engage them, in order to understand their economic patterns better.
When a customer wants to leave a bank, analytics can probe the reasons as to how or why the customer is disappointed, and even prompts upgrades to fix the situation. It’s eventually about strategy-building, about coming up with ways to be better than your competition and fulfilling the needs of your existing customer base.
Also read: Business Analytics – Tools & Applications
In this cutthroat commercial market, customer retention is the trickiest part for banks, mainly because so many people are committed to more than one banks. It often turns into a quest to offer better, more streamlined offers, better loan packages, smarter fund recovery options, reward points, these are just some ways to retain customer loyalty.
But these again, are determined with the help of analytics, the bank has to know what exactly the customer responds to, in terms of upgrades and benefits, it can’t afford to be redundant.
4. To Improve Marketing Prospects
With the help of analytics, banks can design products to optimize sales and minimize attrition. Analytics plays a huge role in minimizing risks associated with a product, as it can fathom its limitations beforehand and also by identifying non-performing assets.
Banks can obviously maximize their Return on Investments (ROI) with analytics, since it has the ability to create marketing that’s more streamlined, so the right product is aimed at the right kind of consumer, and this is key to new-age banking.
5. For Reducing Risks
Using predictive analytics, companies can effectively manage their risks, especially since it can monitor so many diverse forms of data sets at once, be it raw or structured. So it can assess the potential risks involved in any field, be it marketing or be it workforce-related. Most importantly, it can be used to detect the root of past mistakes or bad fiscal phases, and to determine ways to fix loopholes.
With analytics, certain calculated parameters can be put in place to assess high risk decisions better, since there’s always an element of unpredictability when it comes to the market. The key is to plan along the lines of the risk, be it with the help of predictive modeling, or even individual case studies, but understanding the range of a risk and its eventual aftermath is crucial and analytics is very specific when it comes to gathering insight about the causality or the outcomes.
Read more: Top 5 Big Data Applications in Banking & Insurance
Concluding Thoughts
It is essential to note that analytics has a lot to do with business intelligence; it’s data that you can convert into usable knowledge. In banking, especially with predictive analytics and big data, it has become a lot easier to figure out the opportunities which would fetch the highest response rates among customers.
Featured Program For you MBA From Golden Gate University.
When it comes to service, especially, analytics has the potential to offer exactly what the customer has been looking for in terms of value-added offerings, so banks can actually design opportunities to cater to certain niches and it helps immensely in securing customer loyalty.
Business Analytics has become an integral part of the business world. As data keeps on piling up by the minute, more and more organizations are relying on BA and BI tools to boost profitability and optimize business operations. And more students and professionals are rushing to pursue MBA business analytics course to brush up their knowledge and experience.
And with the cut-throat competition that exists today, businesses that do not integrate business analytics within their framework are not only missing out on growth opportunities but also might fail to keep up with the market over time.
Frequently Asked Questions (FAQs)
1. How is business analytics used in banking?
Business analytics is perhaps one of the most important skills in today’s world. Almost every new technical entrepreneur is developing complex programs that could help large businesses take important decisions in various functions – such as finance, marketing, operations, business strategy, customer service & retention, and more. India’s BFSI industry is currently being transformed with digitization. With business analytics, banks can make better decisions in various functions including risk, underwriting, policy, marketing, business development & strategy and more. Business analytics also helps banks digitize their systems, processes and channels in order to serve customers quicker, better and in a more cost-effective manner.
2. How to get a business analytics role in the BFSI industry?
If you are interested in a business analytics role in BFSI, it would be very helpful to have a graduate degree in engineering, maths or statistics. Combining this with an MBA in digital finance, business analytics, or banking would be an excellent decision. Depending on your interest, you can get roles as a financial analyst, financial planner, risk manager, policy manager, investment banker, trading specialist, product manager, and so on. If you do not have a background in maths, you can take up part-time courses to train in the use of business analytics tools, statistical and financial modelling.
3. Is it required to know coding to get a job in business analytics?
It is not necessary to know coding if you are serious about a career in business analytics. However, coding skills certainly come in handy if you would like to get into hard-core analytics such as designing algorithms that could help organisations interpret vast amounts of data and make decisions based on these interpretations. A knowledge in tools such as R and SaaS combined with a working knowledge of Python, Java Script, and Ajax would be a huge bonus. If you would like to get such roles, it would be a good idea to take part-time courses in coding languages.