- Blog Categories
- Software Development
- Data Science
- AI/ML
- Marketing
- General
- MBA
- Management
- Legal
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- Software Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Explore Skills
- Management Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
Computer Vision Algorithms: Everything You Wanted To Know [2024]
Updated on 03 July, 2023
8.19K+ views
• 11 min read
Table of Contents
Introduction
The word computer vision means the ability of a computer to see and perceive the surrounding. A lot of application holds for computer vision to cover — Object detection and recognition, self driving cars, facial recognition, ball tracking, photo tagging, and many more. Before diving in the technical jargons, first let’s discuss the entire computer vision pipeline.
The entire pipeline is divided into 5 basic steps, each with a specific function. Firstly, the input is needed for the algorithm to process that can be in the form of an image or stream of image (image frames). The next step is pre-processing. In this step, functions are applied to the incoming image(s) so that the algorithm can better understand the image.
Some of the functions involve noise reduction, image scaling, dilation, and erosion, removing color spots, etc. The next step is selecting the area of interest or the region of interest. Under this lies the object detection and image segmentation algorithms. Further, we have feature extraction that means retrieving relevant information/features from the images that are necessary for accomplishing the end goal.
Get Machine Learning Certification from the World’s top Universities. Earn Masters, Executive PGP, or Advanced Certificate Programs to fast-track your career.
The final step is recognition or prediction, where we recognize objects in a given frame of images or predict the probability of the object in a given image frame.
Example
Let’s look at a real world application of the computer vision pipeline. Facial expression recognition is an application of computer vision that is used by a lot of research labs to get an idea of what effect a particular product has on its users. Again, we have input data to which we apply the pre-processing algorithms.
The next step involves detecting faces in a particular frame and cropping that part of the frame. Once this is achieved, facial landmarks are identified like mouth, eyes, nose, etc. — key features for emotion recognition.
In the end, a prediction model( trained model) classifies the images based on the features extracted in the intermediary steps.
Algorithms
Before I start mentioning the algorithms in computer vision, I want to stress the term ‘Frequency’. The frequency of an image is the rate of change of intensity. High-frequency images have large changes in intensity. A low-frequency image is relatively uniform in brightness or the intensity changes slowly.
On applying Fourier transform to an image we get a magnitude spectrum that yields the information of the image frequency. Concentrated point in the center of the frequency domain image means a lot of low frequency components are present in the image. High frequency components include — edges, corners, stripes, etc. We know that an image is a function of x and y f(x,y). To measure the intensity change, we just take the derivative of the function f(x,y).
Object Detection Algorithms: From R-CNN to YOLO
Object detection is a fundamental task in computer vision algorithms that involves locating and classifying objects within an image or a video. Over the years, several object detection algorithms have been developed, each with its own strengths and limitations. In this article, we will explore two popular object detection algorithms: R-CNN and YOLO.
R-CNN (Region-based Convolutional Neural Network) was one of the pioneering algorithms in object detection. It introduced the concept of region proposals, which involves generating a set of potential object-bounding box regions within an image. R-CNN then applies a pre-trained CNN to each proposed region, extracting features and performing classification to determine the presence of objects. While R-CNN achieved good accuracy, its drawback was its slow inference speed due to its sequential processing of region proposals.
To address the speed issue, subsequent improvements were made, leading to the development of Fast R-CNN and Faster R-CNN. These algorithms introduced region of interest (ROI) pooling and shared convolutional layers, which significantly sped up the detection process. By sharing convolutional computation across regions, these algorithms achieved faster inference times while maintaining high accuracy.
Another breakthrough in object detection came with the introduction of You Only Look Once (YOLO). YOLO revolutionized the field by introducing a single-stage detection approach that achieved real-time object detection. YOLO divides the input image into a grid and predicts bounding boxes and class probabilities directly from each grid cell. This approach eliminates the need for region proposals and allows for simultaneous detection across the entire image. YOLO’s architecture, coupled with its efficient implementation, enables it to achieve impressive speed while maintaining competitive accuracy.
Image Classification Using Convolutional Neural Networks (CNNs)
Image classification is a crucial task in computer vision algorithms and applications that involves assigning labels or categories to input images. Convolutional Neural Networks (CNNs) have emerged as the go-to architecture for image classification, delivering state-of-the-art performance on various datasets.
CNNs excel at capturing hierarchical representations of images, learning both low-level and high-level features. The architecture comprises multiple layers, including convolutional, pooling, and fully connected layers. Convolutional layers use filters to detect local patterns and spatial relationships within the input image. Pooling layers downsample feature maps, reducing computational complexity while retaining important information. Fully connected layers enable the network to make predictions by learning complex relationships between extracted features and their corresponding classes.
Pre-training and fine-tuning CNNs using large-scale datasets, such as ImageNet, have become common practices. Pre-trained models, such as VGGNet, ResNet, and Inception, serve as powerful feature extractors, allowing for transfer learning. By leveraging pre-trained models, even with limited labeled data, one can achieve remarkable accuracy in image classification tasks.
CNNs have also benefited from advancements in regularization techniques, such as dropout and batch normalization, which mitigate overfitting and improve generalization. These techniques, along with data augmentation strategies like rotation, scaling, and flipping, help the network generalize well to unseen images.
In-demand Machine Learning Skills
Sober Filter
The Sobel operator is used in image processing and computer vision for edge detection algorithms. The filter creates an image of emphasizing edges. It computes an approximation of the slope/gradient of the image intensity function. At each pixel in the image, the output of the Sobel operator is both the corresponding gradient vector and the norm of this vector.
The Sobel Operator convolves the image with a small integer-valued filter in the horizontal and vertical directions. This makes the operator inexpensive in terms of computation complexity. The Sx filter detects edges in the horizontal direction and Sy filter detects edges in the vertical direction. It is a high pass filter.
Applying Sx to the image
Applying Sy to the image
Read: Machine Learning Salary in India
Averaging Filter
Average filter is a normalized filter which is used to determine the brightness or darkness of an image. The average filter moves across the image pixel by pixel replacing each value in the pixel with the average value of the neighboring pixels, including itself.
The Average (or mean) filtering smoothens the images by reducing the amount of variation in the intensity between the neighboring pixels.
Average filter, Image source
Gaussian Blur Filter
Gaussian blur filter is a low pass filter and it has the following functions:
- Smooths an image
- Blocks high frequency parts of an image
- Preserves edges
Mathematically, by applying a Gaussian blur to an image we are basically convolving the image with a Gaussian function.
In the above formula, x is the horizontal distance from the point of origin, y is the vertical distance from the origin point, and σ is the standard deviation of the Gaussian distribution. In two dimension, the formula represents a surface whose profiles are concentric circles with a Gaussian distribution from the point of origin.
Gaussian Blur Filter, Image source
One thing to note here is the importance of choosing a right kernel size. It is important because if the kernel dimension is too large, small features present in the image may disappear and the image will look blurred. If it is too small, the noise in the image will not be eliminated.
Also Read: Types of AI Algorithm You Should Know
Canny Edge Detector
It is an algorithm that makes use of four filters to detect horizontal, vertical and diagonal edges in the blurred image. The algorithm performs the following functions.
- It is a widely used an accurate edge detection algorithm
- Filters out noise using Gaussian Blur
- Finds the strength and direction of edges using Sobel filter
- Applies non-max suppression to isolate the strongest edges and thin them to one pixel line
- Uses hysteresis(double thresholding method) to isolate the best edges
Canny Edge detector on a steam engine photo, Image by Wikipedia
Haar Cascade
This is a machine learning based approach where a cascade function is trained to solve binary classification problems. The function is trained from a plethora of positive and negative images and is further used to detect objects in other images. It detects the following:
- Edges
- Lines
- Rectangular patterns
To detect the above patterns, following features are used:
Convolutional layers
In this approach, the neural network learns the features of a group of images belonging to the same category. The learning takes place by updating the weights of the neurons using back propagation technique and gradient descent as an optimizer.
It is an iterative process that aims to decrease the error between the actual output and the ground truth. The convolution layers/blocks so obtained in the process act as feature layers that are used to distinguish a positive image from a negative one. Example of a convolution layer is given below.
Convolutional Neural Network, Image Source
Must Read: Types of Classification Algorithm in ML
The fully connected layers along with a SoftMax function at the end categorizes the incoming image into one of the categories it is trained on. The output score is a probabilistic score with a range between 0 to 1.
Popular AI and ML Blogs & Free Courses
Conclusion
An overview of the most common algorithms used in Computer Vision has been covered in this blog along with a general pipeline. These algorithms form the basis of more complicated algorithms like SIFT, SURF, ORB, and many more.
If you’re interested to learn more about machine learning, check out IIIT-B & upGrad’s PG Diploma in Machine Learning & AI which is designed for working professionals and offers 450+ hours of rigorous training, 30+ case studies & assignments, IIIT-B Alumni status, 5+ practical hands-on capstone projects & job assistance with top firms.
Frequently Asked Questions (FAQs)
1. What is the difference between Image Processing and Computer Vision?
Image Processing enhances the raw form of images to produce a better version. It is used for extracting some features of the primary image as well. Image Processing is hence a distinct section in the Computer Vision field itself. However, Computer Vision focuses on recognising stimuli objects for accurate classification. Both also use similar technologies in their procedure. Hence, Image Processing can be the primary process in Computer Vision. It remains to be a prominent field in Artificial Intelligence. Image Processing focuses on enhancing images; Computer Vision technology focuses on detailed, accurate analytics to create better systems.
2. Why is Deep Learning used to build Computer Vision algorithms?
Computer Vision has made Artificial Intelligence(AI) more robust due to rigorous data-driven research and consistent visual data analysis. Deep Learning is a continuous process of data input through neural networks. The information is derived from human brain processes to perfect the algorithm for efficient learning, processing, and output. Deep Learning enhances accurate data classification, ensures a reliable AI model. Computer Vision uses this method to align AI to the human brain’s neural network. Deep Learning has enabled dependable systems to assist humans and improve their quality of life.
3. What is a Low Pass filter and High Pass filter?
In Computer Vision Algorithms, multiple filters produce desired outcomes from a raw image. These filters perform numerous functions to smoothen, sharpen and accentuate the appearance as desired. The filters differ in their frequency and propose different effects. For e.g., The Gaussian Blur filter essentially works on smoothing the image by altering the high-frequency parts of the image and preserving the edges. It is called a Low Pass filter because it diminishes the high-frequency locations and maintains the low-frequency locations giving it a smoother visual. In High Pass filters, the low-frequency locations are decreased, and the former preserved, which results in a sharper visual.
RELATED PROGRAMS