- Blog Categories
- Software Development
- Data Science
- AI/ML
- Marketing
- General
- MBA
- Management
- Legal
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- Software Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Explore Skills
- Management Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
Covariance vs. Correlation: What is the Difference
Updated on 23 September, 2022
9.22K+ views
• 10 min read
Table of Contents
Whether you are a newbie or a budding professional in the field of Data Science, having a thorough grasp on your basics is a must. And one of them is the very fundamental concept of the difference between covariance and correlation.
With the enormous amount of information generated, consumed, and stored globally, companies have a gold mine of data at their disposal. However, all that data is practically useless if not analyzed and manipulated to derive actionable insights. Here’s where Data Science comes into the picture – with its invaluable arsenal of statistical methods, data analytics, scientific methods, and artificial intelligence algorithms, Data Science is the ultimate savior. Data Science enables business analysts to discover trends and insights from large datasets, which can be further used to shape business decisions.
With the inarguable importance Data Science has in moulding the course of technology, let’s dive into the fundamentals of covariance vs. correlation and upGrad courses that can help you learn them.
Covariance vs. Correlation: What do they mean?
Covariance and correlation are two prevalent terms that one comes across in statistics and probability theory. While both have very similar connotations and describe the dependency and linear relationship between variables, there are stark differences between the two. Covariance signifies the direction of the linear relationship between two variables, whereas correlation indicates both the direction and strength of the linear relationship between variables.
Before we get into the detailed explanation of covariance vs. correlation, it is essential to understand two other fundamental terms – variance and standard deviation.
Variance
Variance is the measure of the spread between variables in a dataset. In simpler terms, variance measures how far each variable in the dataset is from the average value and thus from every other variable in the set. The larger the spread, the more the variance with respect to the mean (average). Variance is denoted by the symbol S2 (sample variance).
Mathematically, variance is depicted using the formula:
S2 = Σ(X – x̄)2 / n – 1
where,
S2 = sample variance
Σ = sum of
X = each value
x̄ = sample mean
n = number of data values
Standard Deviation
Standard Deviation measures the amount of dispersion or variation of a dataset relative to its mean. While a high value of standard deviation indicates that the data points are spread out over a broader range, a low value of standard deviation would mean that the data points are close to the mean of the dataset. Standard deviation is denoted by the symbol ‘s’ (sample standard deviation) or σ (population standard deviation).
Mathematically, the standard deviation is depicted using the formula:
s = √Σ(X – x̄)2 / n – 1
where,
s = sample standard deviation
Σ = sum of
X = each value
x̄ = sample mean
n = number of data values
Before getting into in-depth correlation and covariance difference, let’s first get familiar with covariance and correlation.
Covariance
Covariance is an extension of variance and determines the direction of the relationship between two variables. In other words, covariance indicates whether the two variables are directly proportional or inversely proportional to one other. Therefore, a change in the value of one variable will inevitably affect the other. However, it is pertinent to mention that covariance only measures the change of one variable with respect to another and not their inter-dependency.
- Covariance can take any value between -∞ and +∞.
- A positive covariance value signifies a direct relationship between the variables. So, an increase in the value of one variable would lead to a corresponding increase in the other variable, with other conditions remaining constant. Thus, both the variables move together in the same direction as they change.
- In contrast, a negative covariance would mean an inverse relationship between the two variables. When the value of one variable increases, the other will decrease. Essentially, these variables are said to be inversely related and move in opposite directions.
Mathematically, the covariance between two variables x and y is represented as follows:
Cov(X,Y) = Σ(Xi – x̄)(Yi – ȳ) / n – 1
where,
Cov(X,Y) = covariance between x and y
Σ = sum of
Xi = data value of X
Yi = data value of Y
x̄ = mean of X
ȳ = mean of Y
n = number of data values
Correlation
In contrast to covariance that only measures the direction of the relationship between two variables, correlation also measures the relationship’s strength. Thus, correlation quantifies the relationship between the variables and signifies how strong or weak the relationship is. The primary outcome of correlation is the correlation coefficient ( r ).
It not just demonstrates the type of relationship but also indicates the power of the relationship. Therefore, we can understand that the correlation values have standardized representation, but the covariance values are not standardized and can’t be used to evaluate the weak or strong relationship. The reason is the magnitude doesn’t have direct significance.
- Correlation can only take values between -1 and +1.
- A correlation of +1 signifies a direct and strong relationship between the variables. The increase in one variable leads to a corresponding rise in the other. On the other hand, a correlation of -1indicates a solid, inverse relationship. An increase in one variable will cause an equal and opposite decrease in the other. A correlation value of 0 means that the variables do not have any linear relationship.
- A correlation value closer to -1 or +1 would mean a close relationship between the variables.
- If you want to determine whether the covariance between the two variables is small or large, you must evaluate it with respect to the standard deviations between the two variables. You can do this by normalizing the covariance after dividing it with the multiplication of the standard deviations of the two variables. Hence, it provides a correlation between the two variables. Moreover, correlation is an important method for examining relations between two variables before executing statistical modeling.
The mathematical expression of correlation is as follows:
r = Cov(x,y) / σX – σY
where,
Cov(x,y) = covariance between X and Y
σX = standard deviation of X
σY = standard deviation of Y
If there is no relationship between two variables, the correlation coefficient will be 0. But if this value is 0, you can only conclude that there is no linear relationship. There may exist other functional relationships among the variables.
When the correlation coefficient’s value is positive, if one variable’s value increases, the others also increase. But when the correlation coefficient’s value is negative, the alterations in the two variables happen in opposite directions. If the correlation coefficient shows “0”, a decrease or increase in one variable doesn’t affect another.
You can better evaluate the correlation and covariance difference if you understand the types of correlation. Here are its types:
- Simple Correlation: A single number expresses the amount by which two variables are related.
- Partial Correlation: When one variable’s effects are eliminated, the correlation between the two variables is discovered in partial correlation.
3. Multiple Correlation: It is a statistical technique that uses two or more variables to forecast the value of one variable.
Methods of calculating the correlation
- The scatter method
- The graphic method
- Co-relation Table
- Coefficient of Concurrent deviation
- Karl Pearson Coefficient of Correlation
- Spearman’s rank correlation coefficient
- Kendall rank correlation
Now let’s understand the correlation matrix.
What is a correlation matrix?
The correlation coefficients are used to establish the relationship between two variables. For instance, to determine the number of hours a student should spend working to accomplish a project before the deadline. But if you want to assess the correlation between multiple pairs of variables, you can use a correlation matrix.
A correlation matrix is a table demonstrating the correlation coefficients for different variables. The columns and rows include the variables’ values. Each cell indicates the correlation coefficient.
How is the correlation matrix useful?
The correlation matrix is used to analyze various data-driven problems. Here are a few common use cases:
- To perform regression testing
- To determine the input for various analyses
- To easily encapsulate datasets
With enough details on these two terms, let’s now go through the difference between correlation and covariance.
Difference Between Covariance and Correlation
Now that we have covered the basic concepts related to covariance and correlation, it is time to delve into their differences. No doubt, the two statistical terms seem pretty similar at first glance. However, a more detailed study reveals that covariance and correlation are distinct in several aspects.
The following section discusses covariance and correlation difference from various perspectives to ensure a thorough analysis. So, let us look at the difference between covariance and correlation:
Meaning
Covariance is a measure of the extent to which two variables change together.
On the other hand, correlation is a measurement of the strength of the linear relationship between variables.
Values
Covariance can take any value between -∞ and +∞.
The correlation value can be anywhere between -1 and +1.
What do they represent?
Covariance shows the direction of the linear relationship between the variables. While a positive value indicates a direct relationship, a negative covariance value means an inverse relationship.
In contrast, correlation indicates both the direction and strength of the linear relationship between the variables. The closer the value to +1 or -1, the stronger the relationship.
Scalability
Another important covariance vs correlation difference is based on scalability. The change of scale affects covariance. For instance, if the value of two variables is multiplied by the same or different constants, the calculated covariance of the two variables will change.
In contrast, correlation is immune to the change in scale. Hence, multiplication by constants does not change the initial correlation value.
Units
The unit of covariance is the product of the units of the two variables.
On the other hand, correlation is dimensionless. Therefore, it is a unit-free measure of the relationship between the variables that makes the comparison of calculated correlation values easier across variables.
Utility
Covariance can be computed for only two variables.
On the other hand, correlation can be calculated for multiple sets of variables, a quality that makes it a more convenient choice for data analysts.
Applications
Covariance mostly finds its use as an input to other analyses. Typical use cases are in stochastic modelling and principal component analysis.
Common applications of correlation include summarizing large amounts of data, input into other analyses, and as a diagnostic for further analyses.
Applications of covariance:
- One prominent correlation vs covariance difference is that covariance is used in Molecular and Genetics Biology to measure certain DNAs.
- It is used in the forecast of the amount of investment on various assets in the financial markets.
- It is extensively used to gather data acquired from oceanographic /astronomical studies and derive conclusions.
- It is used in Statistics to analyze a data set with logical allegations of a principal component through a covariance matrix. The Principal Component Analysis is implemented to decrease the dimensions of huge data sets. An Eigen decomposition is implemented to the covariance matrix to carry out a principal component analysis.
- It is used to study signals collected in different forms.
- Cholesky decomposition is used to simulate systems having multiple correlated variables. A covariance matrix helps define the Cholesky decomposition since it is a positive semi-definite
Applications of correlation
- Correlation determines time vs money spent by a customer on different online e-commerce websites.
- It compares previous records of weather forecasts with that of the current year.
- It is commonly used in pattern recognition when dealing with huge amounts of data. It checks whether the variables are highly correlated or not.
- It analyzes the increase in temperature during summer vs. water consumption in a family.
- It determines the relationship between poverty and population.
- When eliminating missing values pairwise, the correlation matrices are used as inputs for confirmatory factor analysis, exploratory factor analysis, linear regression, and structural equation models.
How are covariance and correlation relevant to data analytics?
Statistics lays the foundation of several data analysis techniques. To have a detailed correlation vs covariance comparison, you must know how they are relevant to data analytics. Although there exist covariance and correlation difference, both of them are uniquely useful to data analytics. Certain common use cases of correlation and covariance in the field of data analytics are:
They are used to compare samples among two or more diverse populations. This helps in analyzing the common patterns and trends in different samples.
They are useful in data-driven industries to identify the multivariate data that eventually helps in data processing and performing analytical operations.
PCA (principal component analysis) is employed using correlation and covariance to reduce the dimensions of huge datasets and thus improve interpretability. Commonly, data scientists use PCA to perform exploratory data analysis and predictive analysis.
Analytical processes like multivariate analysis and feature selection are fulfilled by implementing correlation and covariance methods.
Which one to choose?
Having gone through the detailed discussion on covariance vs correlation, it’s now imperative to decide which one to choose. Though there is a difference between correlation and covariance, they are closely related to each other. Covariance indicates the type of interaction, whereas correlation indicates the strength and the type of this relationship. This is why correlation is usually designated as the special case of covariance. But when it comes to a choice between the two, most analysts choose correlation as it stays unaffected by the alteration in locations, dimensions, and scale. Moreover, since its range is limited to -1 to +1, it helps to derive comparisons between variables across the domains. But, the key limitation of correlation and covariance is that they evaluate only the linear relationship.
The way forward: Accelerate your career with upGrad
upGrad is an online higher education platform offering industry-relevant programs and courses in collaboration with the best-in-class faculty and experts. upGrad combines the latest technology, services, and pedagogic practices to deliver an immersive and world-class learning experience. With a learner base across 85+ countries and over 40,000 paid learners globally, upGrad’s courses and programs have benefitted more than 500,000 working professionals.
upGrad’s Master of Science in Data Science and Master of Science in Machine Learning & AI are two programs that will help you become proficient in the necessary skills required to flourish in the field of Data Science and Artificial Intelligence. With particular emphasis on 360-degree career assistance, peer learning, and global networking with industry leaders and experts, the two prestigious programs are tailor-made to deliver an unparalleled learning experience.
1. Master of Science in Data Science Program Highlights:
- Prestigious M.Sc. degree from Liverpool John Moores University, UK.
- Choose from 6 specializations.
- Comprehensive coverage of 14+ tools and software
- Over 500 hours of learning content with 60+ case studies and industry-relevant projects, 20+ live sessions, and 1:8 coaching sessions with industry experts.
2. Master of Science in Machine Learning & AI Program Highlights:
- Prestigious M.Sc. degree from Liverpool John Moores University, UK.
- Exhaustive coverage of over 20 tools, languages, and libraries.
- Over 40 live sessions and industry expert mentorship.
- 12+ industry projects and assignments and six capstone projects.
To Wrap It Up
Both covariance and correlation measure the linear relationship between variables. Nonetheless, given a choice between the two, correlation is favoured over covariance for two primary reasons. First, the correlation coefficient remains unaffected by the change in scale, and second, it is a unitless measure that simplifies comparisons.
A strong foundation of mathematical and statistical concepts is crucial to a promising career in Data Science and Artificial Intelligence. However, with the cut-throat competition and the constant need for professional upskilling, the best way to future-proof your resume is by choosing the right program – a step that you can take with upGrad.
Frequently Asked Questions (FAQs)
1. How do covariance and correlation help Data Scientists?
Covariance and correlation are two common statistical concepts used by Data Scientists to measure the linear relationship between two variables in data. While covariance identifies how two variables vary simultaneously, correlation determines how change in one variable affects the change in another variable.
2. Can I do covariance and correlation in MS Excel?
Yes, covariance and correlation can be calculated using MS Excel. The first step is to enter the data into the Excel sheet in clearly labeled columns. Then, you can choose either of the following options:
1. Use Function Codes: The function code for covariance is =covar(array1,array2) and that for correlation is =correl(array1,array2)
2. Use Toolpak Method: Under the Data tab, click on Data Analysis and choose the desired calculation.
3. What is the difference between population and sample?
Population and sample are two commonly used statistical terms. Their difference lies in how observations are assigned to the dataset - while a population includes all the elements of a dataset, a sample comprises one or more observations drawn from a population. Based on the sampling method, a sample can have fewer, more, or the same number of observations as the population.
4. Why is correlation important?
Correlation is a statistical term used to understand how much two variables are related. In the field of Data Science, where consistent, reliable, and replicable results are pursued, determining correlation becomes a necessary tool for producing significant results. For, e.g., analysing the correlation between A and B can help you understand if and how strongly they are related. Data scientists further use this data to analyse, predict, and make decisions based on the strength of a correlation to produce desirable outcomes.
5. What are correlation coefficients?
Correlation coefficients are the outcome of a correlation denoted by ‘r’. They explain the strength and weaknesses of the correlation. The correlation coefficient ranges from -1 to +1, wherein the power of the variables is maximum towards -1 and +1. Multiple methods can calculate correlation coefficients. The Pearson Correlation method is the most common one used for a normal distribution. Analysts can use the Spearman Rank correlation method for all types of distribution. Correlation coefficients differ in the variables they are measuring. For example, ordinal or continuous variables will have different correlation analysis methods and data distribution.
6. Is a negative correlation alarming?
A negative correlation indicates a contrary relationship between the variables. Suppose ‘A’ and ‘B’ are expected to rise together when either one increases. However, this won’t be the result when they are negatively correlated. Instead, A would be inversely proportional to B. If an inverse relation was expected from A and B to produce the desirable outcome, then a negative correlation is beneficial and necessary. Hence, it depends on the requirement of the analyst and not on the connotation of the term.