- Blog Categories
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Gini Index for Decision Trees
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Brand Manager Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Search Engine Optimization
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
Data Mining Vs. Data Analytics: Difference between Data Mining & Data Analytics
Updated on 04 October, 2022
18.46K+ views
• 9 min read
Table of Contents
There is no denying that data on all corners surround us. Our generation has been fortunate enough to see the rise of the internet and all the benefits which come with free and accessible information sharing. This ease of information sharing has led to an exponential surge in the sheer amount of raw data generated.
To put things into perspective, all the clicks made by you, the websites you visit, the amount of time you spend on each of the websites you visit, your online presence, etc., are data that you generate. Now, in its raw form, this data is unusable. Nothing of meaning could be extracted out of the trail of data each of us leave.
Learn data science courses online from the World’s top Universities. Earn Executive PG Programs, Advanced Certificate Programs, or Masters Programs to fast-track your career.
However, with the right tools and computing power, this data can then be processed and converted into meaningful insights that drive big corporations’ decisions and dictate their profits. The ones who hail the data to be the next industrial revolution are not wrong.
Must Read: Data Science Vs Data Mining
In this world where data is everything, new fields pertaining to catering specific niches of data must come into the picture. People already serving in these fields throw terms like Data Science, Data Mining, Machine Learning, Deep Learning, Data analytics, etc. quite loosely. For those not in these fields, gaining a basic understanding of these terms can be quite confusing.
Data Mining and Data analytics are crucial steps in any data-driven project and are needed to be done with perfection to ensure the project’s success. Adhering to both fields’ closeness, as mentioned earlier, can make finding the difference between data mining and analytics quite challenging. Before we are in a state to understand do a data mining vs. data analytics comparison, we must first closely understand the two fields very closely.
Checkout: Data Analyst Salary in India
Explore our Popular Data Science Courses
Data Mining
Data mining is a deliberate and successive cycle of distinguishing and finding shrouded examples and identifying useful data in an enormous dataset. It is otherwise also called “Knowledge Discovery in Databases.” It has been a trendy expression since the 1990s. But only in the recent decade has this field really gained traction. The improvement in computing prowess has allowed data mining to become streamlined and mainstream.
Read: Data Mining Project Ideas & Projects
Data Analysis
Information Analysis, then again, is a superset of Data Mining, which includes removing, cleaning, changing, demonstrating the data to reveal significant and valuable insights that can help determine the way to proceed forward and make choices pertaining to the company in question. Data Analysis as a cycle has been around since the 1960s. It has only recently come into the mainstream and has proven to be an indispensable tool in any significant global player’s arsenal.
Now that we know the basics of data mining and data analytics, we are positioned to pit data mining vs. data analytics head to head and understand all the nuances and differences between data mining and analytics.
Read: Data Analytics Project Ideas
Data Mining vs Data Analysis: Skillset
When it comes to the discussion of Data Mining vs Data Analysis in terms of the skillset there is a lot of difference between data mining and data analysis. Let us go through each domain and see in-depth what is required from each profession, we will then have a better insight on the whole topic of Data Analysis vs Data Mining.
Skills required in Data Mining:
1. Knowledge of operating systems, especially Linux: Data mining engineers usually work on architectures that would set the base for data analysts to build their models. Knowledge of Linux is a must, as most VMs(Virtual Machines) require a Linux-based system to operate in a pipeline.
Linux is a very stable operating system for working with large datasets. Having experience with Spark, deploying a distributed machine learning system on it, and the ability to integrate it with Linux is a bonus for a data engineer.
2. A programming language: There are a lot of languages that are used by data mining engineers out there. Python, R, to name a few. These languages allow you to perform statistical operations on large datasets and allow you to draw an inference from the datasets. Python is a language based on C that works as both a scripting language for the purposes of web development but also offers a huge variety of libraries for data mining, data analytics and data visualization.
upGrad’s Exclusive Data Science Webinar for you –
How to Build Digital & Data Mindset
3. The R programming language is a free and open-source tool for statistical computation and graphical analysis, and R analytics refers to the analysis of data by means of this language. This language is widely used in the fields of statistics and data mining.
4. Data Analytics tools: A data mining engineer needs to know enough about data analytics so that an architecture can be designed for a data analyst to build the models on. Data Science depends on statistics and programming and here is where SAS comes in. The SAS software package was created by the SAS Institute for use in a variety of statistical applications, including data management, advanced analytics, multivariate analysis, business intelligence, forensics, and predictive analytics.
Skills required in Data Analysis:
Probability and Statistics: Data Science and data analysis are founded upon the pillars of probability and statistics. When trying to anticipate the future, the theory of probability is a great asset. Projection and estimation are crucial components of data analytics. We use statistical approaches to estimate values for use in further analysis. Therefore, statistical approaches rely heavily on probability theory. Data is the foundation of probability and statistics.
Data Visualization: Learning anything new from data is just a small fraction of what data analysis entails. To better influence business choices, it is also essential to build a narrative using these insights. This is where the use of data visualization becomes useful.
As a data analyst, one may make their results more accessible by using charts, graphs, maps, and other visual representations of data. Learning visualization tools like Tableau is a common way to hone data visualization abilities. With this standard in business software, one can easily convert their analysis into dashboards, data models, visualizations, and business intelligence reports.
Econometrics: Econometrics is a branch of economics that makes use of statistical and mathematical models to better foresee potential future outcomes. It is important for data analysts to have a firm grasp of econometrics.
A programming language: A data analyst without doubt has to be fluent in a programming language suitable for statistical programming. If you want to do more sophisticated analysis than excel allows, you’ll need to learn a programming language, Python and R being the most popular in the industry.
Though both the fields are under the same domain of Data Science, the above mentions the difference between data mining and data analysis. Having mentioned the differences in the skill set of data mining vs data analysis. Let us move to the topic of data analysis vs data mining in terms of fundamental differences in the next section.
Difference Between Data Mining and Data Analytics
Although data mining and data analytics are two different words in the field of data, they are sometimes used in place of the other. The usage and the meaning behind the terms depend highly on the context and the company in question. To set up their individual identities such that you can easily differentiate between the two, you will find the significant contrasting points listed below:
- Data mining is catering the data collection and deriving crude but essential insights. Data analytics then uses the data and crude hypothesis to build upon that and create a model based on the data.
- Data mining is a step in the process of data analytics. Data Analytics is the umbrella which deals with every step in the pipeline of any data-driven model.
- Data mining shines its brightest when the data in question is well structured. Meanwhile, data analysis can be performed on any data; it would still be able to derive meaningful insights that could help in propelling the corporation to even greater heights.
- Data mining is tasked to accomplish the main job to make the data that is being used more usable. Whereas, data analysis is used to hypothesize and, in the end, culminate itself in providing valuable information to help in business decisions.
- Data mining does not need any bias or any notions which are instilled before tackling the data. Whereas, data analysis is majorly used for hypothesis testing.
- Data mining uses the scientific and mathematical models and methods to identify patterns or trends in the data that is being mined. On the other hand, data analysis is employed to task with business analytics problems and derive analytical models.
- Data mining usually does not need any visualizations, bar charts, graphs, GIPs, etc., whereas these visualizations /are the bread and butter of data analysis. Without a good representation of the data in question, all the efforts which are put into the analysis of the data would not come to fruition.
Read our popular Data Science Articles
Our learners also read: Free Python Course with Certification
Top Data Science Skills to Learn
Conclusion
We have been seeing both the terms, i.e., Data Mining and Data Analysis, for a long time. These terms were palpable until the leap in the sheer power computers made it possible for anyone with a computer to jump in and play with data. Both data mining and data analytics are crucial to be done perfectly. Due to the very nature of the two following fields, their names have been used interchangeably by individual business people.
Meanwhile, there are also people present who have appreciated the differences in the areas and made sure to respect the boundaries of the two fields. In whatever camp you might side with, you cannot deny the importance of both in a data-driven world of the 21st century. Another thing set in stone is the skillset required for both of these fields.
It would help if you had different expertise to be successful in either of the areas. You need a more analytical approach to tackle data analytics. In contrast, you need a pattern recognition mindset and a knack for coding to make a name in the field of data mining.
If you are curious to learn about data science, check out IIIT-B & upGrad’s Executive PG Programme in Data Science which is created for working professionals and offers 10+ case studies & projects, practical hands-on workshops, mentorship with industry experts, 1-on-1 with industry mentors, 400+ hours of learning and job assistance with top firms.
Frequently Asked Questions (FAQs)
1. What is data mining's most significant function?
Data mining is a computational technique that involves approaches from artificial intelligence, machine learning, statistics, and database systems to identify patterns in huge data sets. Extraction of non-trivial nuggets from vast volumes of data is the most essential challenge in data mining.
2. What is the KDD process for data mining?
The terms 'data mining' and 'KDD' are frequently used interchangeably. Although the phrase 'knowledge discovery of databases' may cause some misunderstanding, it refers to the whole process of extracting valuable information from data. Data mining, on the other hand, is the fourth stage in the KDD process. In data mining, KDD is a method of modelling data from a database in order to extract valuable and practical 'knowledge.' It employs a number of self-learning algorithms to extract valuable patterns from the processed data.
3. Is it simple to get a job as a data analyst?
It is not difficult to gain the skills required to become a data analyst. Data analysts are in high demand as well, and entering the field without years of extensive study is straightforward. You can gain the skills needed to work as a data analyst in a few months even if you have no prior programming or technical experience. As a result, it is not difficult to get work as a data analyst.