- Blog Categories
- Software Development
- Data Science
- AI/ML
- Marketing
- General
- MBA
- Management
- Legal
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- Software Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Explore Skills
- Management Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
Data Processing In Hadoop: Hadoop Components Explained [2024]
Updated on 22 November, 2022
12.04K+ views
• 8 min read
With the exponential growth of the World Wide Web over the years, the data being generated also grew exponentially. This led to a massive amount of data being created and it was being difficult to process and store this humungous amount of data with the traditional relational database systems.
Also, the data created was not only in the structured form but also in the unstructured format like videos, images, etc. This kind of data cannot be processed by relational databases. To counter these issues, Hadoop came into existence.
Before we dive into the data processing of Hadoop, let us have an overview of Hadoop and its components. Apache Hadoop is a framework that allows the storing and processing of huge quantities of data in a swift and efficient manner. It can be used to store huge quantities of structured and unstructured data. Learn more about hadoop ecosystem and components.
The pivotal building blocks of Hadoop are as follows: –
Building Blocks of Hadoop
1. HDFS (The storage layer)
As the name suggests, Hadoop Distributed File System is the storage layer of Hadoop and is responsible for storing the data in a distributed environment (master and slave configuration). It splits the data into several blocks of data and stores them across different data nodes. These data blocks are also replicated across different data nodes to prevent loss of data when one of the nodes goes down.
It has two main processes running for processing of the data: –
a. NameNode
It is running on the master machine. It saves the locations of all the files stored in the file system and tracks where the data resides across the cluster i.e. it stores the metadata of the files. When the client applications want to make certain operations on the data, it interacts with the NameNode. When the NameNode receives the request, it responds by returning a list of Data Node servers where the required data resides.
Explore our Popular Software Engineering Courses
b. DataNode
This process runs on every slave machine. One of its functionalities is to store each HDFS data block in a separate file in its local file system. In other words, it contains the actual data in form of blocks. It sends heartbeat signals periodically and waits for the request from the NameNode to access the data.
2. MapReduce (The processing layer)
It is a programming technique based on Java that is used on top of the Hadoop framework for faster processing of huge quantities of data. It processes this huge data in a distributed environment using many Data Nodes which enables parallel processing and faster execution of operations in a fault-tolerant way.
A MapReduce job splits the data set into multiple chunks of data which are further converted into key-value pairs in order to be processed by the mappers. The raw format of the data may not be suitable for processing. Thus, the input data compatible with the map phase is generated using the InputSplit function and RecordReader.
InputSplit is the logical representation of the data which is to be processed by an individual mapper. RecordReader converts these splits into records which take the form of key-value pairs. It basically converts the byte-oriented representation of the input into a record-oriented representation.
These records are then fed to the mappers for further processing the data. MapReduce jobs primarily consist of three phases namely the Map phase, the Shuffle phase, and the Reduce phase.
In-Demand Software Development Skills
a. Map Phase
It is the first phase in the processing of the data. The main task in the map phase is to process each input from the RecordReader and convert it into intermediate tuples (key-value pairs). This intermediate output is stored in the local disk by the mappers.
The values of these key-value pairs can differ from the ones received as input from the RecordReader. The map phase can also contain combiners which are also called as local reducers. They perform aggregations on the data but only within the scope of one mapper.
As the computations are performed across different data nodes, it is essential that all the values associated with the same key are merged together into one reducer. This task is performed by the partitioner. It performs a hash function over these key-value pairs to merge them together.
It also ensures that all the tasks are partitioned evenly to the reducers. Partitioners generally come into the picture when we are working with more than one reducer.
b. Shuffle and Sort Phase
This phase transfers the intermediate output obtained from the mappers to the reducers. This process is called as shuffling. The output from the mappers is also sorted before transferring it to the reducers. The sorting is done on the basis of the keys in the key-value pairs. It helps the reducers to perform the computations on the data even before the entire data is received and eventually helps in reducing the time required for computations.
As the keys are sorted, whenever the reducer gets a different key as the input it starts to perform the reduce tasks on the previously received data.
c. Reduce Phase
The output of the map phase serves as an input to the reduce phase. It takes these key-value pairs and applies the reduce function on them to produce the desired result. The keys and the values associated with the key are passed on to the reduce function to perform certain operations.
We can filter the data or combine it to obtain the aggregated output. Post the execution of the reduce function, it can create zero or more key-value pairs. This result is written back in the Hadoop Distributed File System.
3. YARN (The management layer)
Yet Another Resource Navigator is the resource managing component of Hadoop. There are background processes running at each node (Node Manager on the slave machines and Resource Manager on the master node) that communicate with each other for the allocation of resources. The Resource Manager is the centrepiece of the YARN layer which manages resources among all the applications and passes on the requests to the Node Manager.
The Node Manager monitors the resource utilization like memory, CPU, and disk of the machine and conveys the same to the Resource Manager. It is installed on every Data Node and is responsible for executing the tasks on the Data Nodes.
Explore Our Software Development Free Courses
Must Read: Top 10 Hadoop Tools for Big Data Engineers
Conclusion
The entire workflow for data processing on Hadoop can be summarised as follows: –
- InputSplit; logically splits the data which resides on HDFS into several blocks of data. The decision on how to split the data is done by the Inputformat.
- The data is converted into key-value pairs by RecordReader. RecordReader converts the byte-oriented data to record-oriented data. This data serves as the input to the mapper.
- The mapper, which is nothing but a user-defined function processes these key-values pairs and generates intermediate key-value pairs for further processing.
- These pairs are locally reduced (within the scope of one mapper) by the combiners to reduce the amount of data to be transferred from the mapper to the reducer.
- Partitioner ensures that all the values with the same key are merged together into the same reducer and that the tasks are evenly distributed amongst the reducers.
- These intermediate key-value pairs are then shuffled to the reducers and sorted on the basis of keys. This outcome is fed to the reducers as input.
- The reduce function aggregates the values for each key and the result is stored back into the HDFS using RecordWriter. Before writing it back to the HDFS, the format in which the data should be written is decided by the Outputformat.
If you are interested to know more about Big Data, check out our Advanced Certificate Programme in Big Data from IIIT Bangalore.
Learn Software Development Courses online from the World’s top Universities. Earn Executive PG Programs, Advanced Certificate Programs or Masters Programs to fast-track your career.
Frequently Asked Questions (FAQs)
1. Between Hadoop and MapReduce, which one is a better choice?
Hadoop uses a storage framework to store data. Moreover, it also helps in creating name nodes and data nodes. Apache Hadoop is built on software that makes data distribution and processing a hassle-free task. It uses simple programming to conduct all its operations related to data. Furthermore, it also integrates with MapReduce. On the other hand, MapReduce is mainly a programming-oriented framework that allows the sorting and processing of data using key-value pairs. Its programming model is generally used to implement, generate, and process big data sets that work on a distributed algorithm. Hadoop is open-source and its clusters are scalable. MapReduce offers high availability and fault tolerance. MapReduce works on Java programming language, whereas Hadoop uses multiple programming languages depending on the module.
2. What is the hardware configuration of Namenode and Datanode?
The hardware configuration of a node depends on a number of factors and varies from one node to another. Depending on the extensive use of clusters, the configurations are designed accordingly. The Namenode configuration uses 2 Quad-Core CPUs running at 2 GHZ processors with an in-built RAM of 128 GB. It operates on 10 GB Ethernet and has a disk space of 6 TB Serial ATA. Datanode also uses 2 Quad-Core CPUs running at 2 GHZ processors with an in-built RAM of 64 GB. It operates on 10 GB Ethernet and has a disk space of 24 TB Serial ATA.
3. What are some of the techniques for MapReduce job optimization?
First and foremost, proper cluster configuration is necessary to improve input-output performance. It is also important to keep a cursory check on the graphs, network usage reports, and performance metrics. Plus, the hard drive needs to be constantly monitored to analyze their health. LZO compression usage is another great technique for MapReduce job optimization wherein the LZO will benefit from the map outfit that Hadoop jobs will create. LZO could be a trouble for the CPU, but it uses other reduction techniques that fit well.