- Blog Categories
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Gini Index for Decision Trees
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Brand Manager Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Search Engine Optimization
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
Data Science Course Syllabus: Everything You Need to Know
Updated on 20 February, 2024
8.98K+ views
• 9 min read
Table of Contents
Today’s precise and smart technological developments and solutions available in the market in almost every sector are upgrading rapidly; the data is the heart of these upgradations. Various sensors collect data and transfer it to the system. This data goes through multiple processes such as understanding, analyzing, concluding, and extracting meaningful information.
These procedures use a scientific approach used, and thus it is known as ‘Data Science’. It is a trending interdisciplinary field of the 21st century. Various scientific methods, algorithms, and unstructured systems extract insights and knowledge from structured and unstructured data. It is closely related to data mining, big data, and machine learning.
The global data science platform’s market size is rising exponentially due to its applications in various fields. The demands for intelligent systems are increasing in multiples with the adoption of advanced technology. The value of data science’s market size was 3.93 billion USD (United States Dollar) in 2019.
It is estimated to expand at a CAGR (Compound Annual Growth Rate) of 26.9% between 2020 and 2027. Rising investments in data science research, development, and technological advances are causing such rapid market growth.
The data science field is exciting and grabbing the attention of professionals and freshers. IT professionals are leaning towards making a career in the evolving data science domain.
Explore our Popular Data Science Certifications
What is Data Science?
Data science is an interdisciplinary field that uses scientific methods, algorithms, processes, and systems to extract knowledge and insights from structured and unstructured data. It encompasses a wide range of techniques from statistics, mathematics, computer science, and domain expertise to analyze complex datasets. In our data science courses syllabus, beginners will dive into foundational concepts like probability, statistics, and programming languages such as Python and R. Additionally, we cover advanced topics including machine learning, data visualization, and big data technologies. Through hands-on projects and real-world applications, students gain practical skills essential for a career in data science.
Evolution of Data Science
Data analysis started in the 1960s that has resemblance with data science. The term data science was used first in 1985 in the lecture given at the Chinese Academy of Sciences in Beijing by C. F. Jeff Wu as an alternative word for the statistics. In 1992, three aspects did the successful introduction of a new, interdisciplinary and emerging field of data science:
- Data collection
- Data design
- Data analysis
These theoretical concepts and arguments turned into modern data science in 2001 to expand statistics in technical areas. Though it has been 20 years now, there is no consensus on the definition of data science. It is still a buzzword for many professionals as well as freshers.
Top Data Science Skills to Learn
Exploring Core Data Science Subjects in Detail
As data science expands to achieve an important position in all industries, data science courses will introduce you to the following core subjects that you will be working with as a Data Scientist.
1. Probability and Statistics
When it comes to data science, students need to have a solid foundation in mathematics, especially in the fields of statistics, linear algebra, and probability. All major data science programs include probability and statistics in their course since most machine learning methods, neural networks and other major topics use these skills.
Conditional probability is important for machine learning, while math is required for neural networks. Statistics and probability are also required to work on machine learning algorithms. You should brush up on these skills for an easy understanding of advanced use in data science.
2. Business Intelligence
As a data scientist, you will work with data to help businesses achieve their goals. To ensure profitable decision-making, you need to be up-to-date with the latest business intelligence tools.
The data science course syllabus includes business intelligence because organizations need a professional who can translate the vast amounts of data they have accumulated into simple visual representations to help the business make informed decisions. To become a successful data scientist, you need the perfect mix of critical thinking skills, decision-making abilities and a thorough knowledge of business intelligence tools.
3. Programming Languages
Since you will be dealing with massive amounts of data, you need programming languages to sort, manage and extract valuable information as and when required. When you know the right codes, retrieving the accurate data sets required for analysis becomes easier. Thus, you will be learning various programming languages, including Excel, SQL and Python, which is generally considered to be one of the most efficient programming languages for data science.
4. Machine Learning
Machine learning is an important aspect of the artificial intelligence and data science syllabus that takes the longest to learn. It incorporates a wide range of topics, including the regression approach, decision trees, NLP, text mining and more. You need to be proficient in machine learning to make working with data sets and understanding neural networks much easier.
5. Data Manipulation
Data science is about processing, analyzing and visualizing raw, unstructured data into actionable insights using various tools and techniques. You have to be proficient in visualizing and manipulating data to create data sets that can drive the organization towards streamlining its processes, making informed decisions and achieving its objectives. Thus the data science course syllabus for beginners will create a solid foundation in data manipulation to ensure you can be the driving force for the organization’s success.
Data Science Course Syllabus
In-depth research is improving our understanding and knowledge in Data Science, and thus the study material keeps updating every day for Data Science. There are numerous courses, workshops, training programs, and degrees available for data science held by institutions, universities, and organisations.
With advancements, the data science course syllabus is updated. Some freshers want to start their careers in data science and look for introductory courses that include concepts, hands-on practice, and projects that provide them with the skillset to start working in data science companies.
Most organisations/institutes offer a Data science course syllabus. If we see upGrad’s course syllabus for data science, it includes:
- The concepts of data analysis in excel, Python, and SQL.
- Introductory sessions on Python’s application for Data Science.
- Assignments to strengthen beginners’ ideas. Python is a widely used programming tool for data science and is thus part of all organisations’ data science course syllabus.
- Concepts and hands-on practice on modern technologies such as machine learning, deep learning, natural language processing, computer vision, business intelligence, data analytics, and data engineering.
- Real-time projects for candidates opt to be data scientists, analysts, and developers. These projects help candidates clearly understand technologies and their relevance with data science and finally, how to use them in real-time business development and growth.
upGrad has created one of the most suitable data science course syllabus for professionals. This course is delivered online with learner’s pace and different formats such as certification or Post-Graduate Diploma.
Read our popular Data Science Articles
The course contains preparatory sessions covering data analysis and introduction to the programming language used in data science. Various toolkits like Python, MySQL, and Excel are focused on data toolkits that help candidates visualise, programming, and solve assignments given as a part of the data science course.
If you are curious to learn about data science, check out IIIT-B & upGrad’s Executive PG Program in Data Science which is created for working professionals and offers 10+ case studies & projects, practical hands-on workshops, mentorship with industry experts, 1-on-1 with industry mentors, 400+ hours of learning and job assistance with top firms.
IT (Information Technology) professionals have experience solving various problems logically and developing the best suitable algorithms. To switch their career into data science, they need to upgrade their analytic skills and apply programming language specifically for data science. There are courses developed particularly for professionals looking to upgrade themselves and their abilities to work on data science projects.
Professionals who are willing to work in data science should focus on upskilling their capabilities and knowledge and looking for a suitable course. Their interest lies in the course syllabus rather than other less relevant aspects of the system. Professionals must choose a data science course that concentrates on data science.
upGrad’s Exclusive Data Science Webinar for you –
Watch our Webinar on How to Build Digital & Data Mindset?
Soft Skills Needed for Data Science
- Communication: Effectively conveying complex findings to diverse audiences, including non-technical stakeholders, is crucial in data science.
- Problem-Solving: Data scientists must approach problems analytically, breaking them down into manageable components and devising innovative solutions.
- Curiosity: A curious mindset drives exploration and discovery, leading to deeper insights and more robust analyses.
- Collaboration: Working in multidisciplinary teams, data scientists collaborate with experts from various domains to tackle complex challenges.
- Adaptability: Given the rapidly evolving nature of technology and data, being adaptable is essential to stay current and embrace new methodologies.
- Creativity: Thinking outside the box helps data scientists uncover hidden patterns and devise novel approaches to data analysis.
- Ethical Awareness: Data scientists must navigate ethical dilemmas responsibly, considering the implications of their work on individuals and society.
- Time Management: Balancing multiple projects and deadlines requires strong time management skills to ensure efficiency and productivity.
Frequently Asked Questions (FAQs)
1. What are the core subjects in Data Science?
With data becoming an essential necessity, data science is governing most of the fields. This leads to immense responsibilities as a Data Scientist. The following are the core fields and skills that every company seeks in a candidate.
1. Probability & Statistics: Mathematical fundamentals such as statistics, probability, and linear algebra constitute the most important portion of Data Science.
2. Business Intelligence: You will be responsible for decision-making at various labels, which is why you should be well versed with the latest BI tools.
3. Programming Languages: Python and R are considered to be the most effective and powerful languages for Data Science.
4. Machine Learning Algorithms: Regression techniques, Naive Bayes algorithm, and regression trees are some of the major ML algorithms that you need to focus on.
5. Data Manipulation: Data manipulation and data visualization become crucial when it comes to analyzing your data sets.
2. What is the career path of a data scientist?
Data Science is a field that rewards you almost better than any other field but asks you to follow a certain career path to be a deserving data scientist.
1. Bachelor’s degree
First of all, you have to acquire a bachelor’s degree in Computer Science (CS), Information Technology (IT), or Mathematics.
2. Entry-Level Job
After completing your degree, you should get an entry-level job as a data analyst or a junior data scientist for experience before getting into the big games.
Master’s degree
Data Science is a field that requires at least a master’s degree or a Ph.D. to get bigger opportunities. You can get your master’s parallelly with your entry-level job too.
4. Get a Promotion
Once you are done with your studies, there is no one stopping you from applying for higher opportunities.
3. How much does a data scientist earn on average?
In India, a data scientist earns around ₹698,412 per annum on average, A newbie or an entry-level data scientist having experience of less than 1 year earns around ₹5,00,000 per annum while a data scientist with at least 4 years of experience earns ₹6,10,811 per annum.
A mid-level data scientist having an experience of 5 to 9 years earns ₹10,04,082 per annum in India. The salary rises dramatically with the rise in your experience as senior-level data scientists around more than ₹17,00,000 a year in India!