- Blog Categories
- Software Development
- Data Science
- AI/ML
- Marketing
- General
- MBA
- Management
- Legal
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Gini Index for Decision Trees
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Brand Manager Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- Software Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Explore Skills
- Management Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Search Engine Optimization
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
Data Science Process: Understanding, Data Collection, Modeling, Deployment & Verification
Updated on 06 October, 2022
5.45K+ views
• 8 min read
Table of Contents
Data Science projects in the industry are usually followed as a well-defined lifecycle that adds structure to the project & defines clear goals for each step. There are many such methodologies available like CRISP-DM, OSEMN, TDSP, etc. There are multiple stages in a Data Science Process pertaining to specific tasks that the different members of a team perform.
Whenever a Data Science problem comes in from the client, it needs to be solved and produced to the client in a structured way. This structure makes sure that the complete process goes on seamlessly as it involves multiple people working on their specific roles such as Solution Architect, Project Manager, Product Lead, Data Engineer, Data Scientist, DevOps Lead, etc. Following a Data Science Process also makes sure the quality of the end product is good and the projects are completed on-time.
By the end of this tutorial, you will know the following:
- Business Understanding
- Data Collection
- Modeling
- Deployment
- Client Validation
Explore our Popular Data Science Courses
Business Understanding
Having knowledge of business and data is of utmost importance. We need to decide what targets we need to predict in order to solve the problem at hand. We also need to understand what all sources can we get the data from and if new sources need to be built.
The model targets can be house prices, customer age, sales forecast, etc. These targets need to be decided upon by working with the client who has complete knowledge of their product and problem. The second most important task is to know what type of prediction on the target is.
Whether it is Regression or Classification or Clustering or even recommendation. The roles of the members need to be decided and also what all and how many people will be needed to complete the project. Metrics for success are also decided to make sure the solution produces results that are at least acceptable.
The data sources need to be identified which can provide the data which is needed to predict the targets decided above. There can also be a need to build pipelines to gather data from specific sources which can be an important factor for the success of the project.
Top Data Science Skills to Learn to upskill
SL. No | Top Data Science Skills to Learn | |
1 |
Data Analysis Online Courses | Inferential Statistics Online Courses |
2 |
Hypothesis Testing Online Courses | Logistic Regression Online Courses |
3 |
Linear Regression Courses | Linear Algebra for Analysis Online Courses |
Data Collection
Once the data is identified, next we need systems to effectively ingest the data and use it for further processing and exploration by setting up pipelines. The first step is to identify the source type. If it is on-premise or on-cloud. We need to ingest this data into the analytic environment where we will be doing further processes on it.
Once the data is ingested, we move on to the most crucial step of the Data Science Process which is Exploratory Data Analysis (EDA). EDA is the process of analyzing and visualizing the data to see what all formatting issues and missing data are there.
All the discrepancies need to be normalized before proceeding with the exploration of data to find out patterns and other relevant information. This is an iterative process and also includes plotting various types of charts and graphs to see relations among the features and of the features with the target.
Pipelines need to be set up to regularly stream new data into your environment and update the existing databases. Before setting up pipelines, other factors need to be checked. Such as whether the data has to be streamed batch-wise or online, whether it will be high frequency or low frequency.
Modelling & Evaluation
The modeling process is the core stage where Machine Learning takes place. The right set of features need to be decided and the model trained on them using the right algorithms. The trained model then needs to be evaluated to check its efficiency and performance on real data.
The first step is called Feature Engineering where we use the knowledge from the previous stage to determine the important features that make our model perform better. Feature engineering is the process of transforming features into new forms and even combining features to form new features.
It has to be carefully done in order to avoid using too many features which may deteriorate the performance rather than improve. Comparing the metrics if each model can help decide this factor along with feature importances with respect to the target.
Once the feature set is ready, the model needs to be trained on multiple types of algorithms to see which one performs the best. This is also called spot-checking algorithms. The best performing algorithms are then taken further to tune their parameters for even better performance. Metrics are compared for each algorithm and each parameter configuration to determine which model is the best of all.
Deployment
The model that is finalized after the previous stage now needs to be deployed in the production environment to become usable and test on real data. The model needs to be operationalized either in form of Mobile/Web Applications or dashboards or internal company software.
The models can either be deployed on cloud (AWS, GCP, Azure) or on-premise servers depending upon the load expected and the applications. The model performance needs to be monitored continuously to make sure all issues are prevented.
The model also needs to be retrained on new data whenever it comes in via the pipelines set in an earlier stage. This retraining can be either offline or online. In offline mode, the application is taken down, the model is retrained, and then redeployed on the server.
Different types of web frameworks are used to develop the backend application which takes in the data from the front end application and feeds it to the model on the server. This API then sends back the predictions from the model back to the front end application. Some examples of web frameworks are Flask, Django, and FastAPI.
Our learners also read: Top Python Courses for Free
upGrad’s Exclusive Data Science Webinar for you –
Watch our Webinar on The Future of Consumer Data in an Open Data Economy
Client Validation
This is the final stage of a Data Science Process where the project is finally handed over to the client for their use. The client has to be walked through the application, its details, and its parameters. It may also include an exit report which contains all the technical aspects of the model and its evaluation parameters. The client needs to confirm the acceptance of the performance and accuracy achieved by the model.
The most important point that has to be kept in mind is that the client or the customer might not have the technical knowledge of Data Science. Therefore, it is the duty of the team to provide them with all the details in a way and language which can be comprehended by the client easily.
Read our popular Data Science Articles
Before You Go
The Data Science Process varies from one organization to another but can be generalized in the 5 main stages that we discussed. There can be more stages in between these stages to account for more specific tasks like Data Cleaning and reporting. Overall, any Data Science project must take care of these 5 stages and make sure to adhere to them for all the projects. Following this process is a major step in ensuring the success of all Data Science projects.
The structure of the Data Science Courses designed to facilitate you in becoming a true talent in the field of Data Science, which makes it easier to bag the best employer in the market. Register today to begin your learning path journey with upGrad!
Frequently Asked Questions (FAQs)
1. What is the first step in the data science process?
The very first step in the data science process is to define your goal. Before data collection, modelling, deployment, or any other step, you must set up the aim of your research.
You should be thorough with the “3W’s” of your project- what, why, and how. “What are the expectations of your client? Why does your company value your research? And how are you going to proceed with your research?”
If you are able to answer all these questions, you are all set for the next step of your research. To answer these questions, your non-technical skills like business acumen are more crucial than your technical skills.
2. How do you model your process?
The modelling process is a crucial step in a data science process and for that, we use Machine Learning. We feed our model the right set of data and train it with appropriate algorithms. The following steps are taken into consideration while modelling a process:
1. The very first step is Feature Engineering. This step takes the previously collected information into consideration, determines the essential features for the model and combines them to form new and more evolved features.
2, This step must be performed with caution as too many features could end by deteriorating our model rather than evolving it.
3. Then we determine the spot-checking algorithms. These algorithms are the ones on which the model needs to be trained after acquiring new features.
4. Out of them, we pick the best performing algorithms and tune them to even enhance their abilities. To compare and find the best model, we consider the metric of different algorithms.
3. What should be the approach to present the project to the client?
This is the final step of the lifecycle of a data science project. This step must be handled carefully otherwise all your efforts could go in vain. The client should be walked thoroughly to each and every aspect of your project. A PowerPoint presentation on your model could be the plus point for you.
One thing to be kept in mind is that your client may or may not be from the technical field. So, you must not use core technical words. Try to present the applications and parameters of your project in layman language so that it would be clear to your customers.