Data Science vs Business Intelligence: Difference Between Data Science and Business Intelligence
Updated on Mar 19, 2025 | 10 min read | 5.9k views
Share:
For working professionals
For fresh graduates
More
Updated on Mar 19, 2025 | 10 min read | 5.9k views
Share:
Table of Contents
If there’s one thing common to almost all sectors of modern industry, it is Big Data. While data is the new currency of the 21st century, experts who can effectively leverage it are invaluable. In the debate of data science vs business intelligence, both fields play a crucial role in extracting meaningful insights from raw data to help businesses boost profits and stay ahead of the competition.
Data Scientists and Business Intelligence (BI) professionals work together to transform raw data into business-ready insights that drive growth. Their goal is to create favorable business outcomes, such as increasing ROI, expanding brand reach, enhancing customer satisfaction, and improving retention. In essence, both data science and business intelligence help businesses make data-driven decisions by delivering actionable insights.
But then, does it mean these two roles are the same?
No, they aren’t the same.
Although Data Science and Business Intelligence are related fields that focus on churning value out of Big Data, they have a fair share of differences. Today, we’ll dive deep into those differences to better understand the two inter-related fields – Data Science and Business Intelligence.
At its core, Data Science is all about studying, analyzing, and interpreting voluminous data to obtain hidden insights from within by combining interdisciplinary sciences like Mathematics, Statistics, Computer Science, and Information Science. Thus, Data Science analyzes past data trends to make data-driven future predictions. Business Intelligence, on the other hand, refers to the suite of technologies and strategies a company uses to analyze business data.
While Data Science is largely used for Predictive Analytics or Prescriptive Analytics, organizations chiefly use BI for Descriptive Analytics (reporting).
Data Science is the game-changer of the 21st century. It has completely transformed the way businesses handle data. Earlier, BI was largely a manual domain, monitored and performed by IT professionals. However, today, thanks to Data Science technologies, most of BI and Data Analytics operations are automated – business data is stored in centralized data repositories from where data experts can extract insights and intelligence using automated tools, as and when required. In this way, Data Science has brought the core BI and Analytics operations to the forefront of the business canvas.
Here are 6 pointers highlighting the difference between Data Science and Business Intelligence:
Like we mentioned earlier, Data Science is designed to peek into the future. It interprets past and present data to visualize what the future of a company will look like. Contrary to this, BI looks backwards on historical to deliver detailed reports, KPIs, and trends. However, unlike Data Science, BI does not depict what the insights might look like in the future through adequate visualization.
While Data Science is all about exploring the depths of business data and experimenting with the insights in many possible ways, traditional BI systems are static, in that they do not provide the scope to explore and experiment with how a company collects and handles the data.
BI is built to analyze and interpret highly structured and static data, but Data Science supports high-speed, high-volume, and multi-structured complex data gathered from disparate sources. While BI is designed to understand only pre-formatted data in specific formats, Data Science technologies can effectively collect, clean, process, analyze, interpret, and visualize free-form data collected from multiple sources.
The present business scenario is extremely dynamic. New trends, new technologies, and new methodologies constantly shape the industry as we speak. Thus, it is crucial that data, like any other enterprise asset, is flexible enough to sync with the fast-paced industry trends. This is where Data Science take the upper hand over BI – while BI systems store data in siloed in data warehouses (making it difficult to deploy across the business infrastructure), Data Science takes the central repository approach to help move data in real-time.
Data Science and BI differ in how they deliver value to a business. Business Intelligence analyzes historical and present data to find out answers to the questions that are already on the table. However, Data Science digs into large and complex datasets to discover new and innovative questions that you did not know existed. In this way, Data Science encourages businesses to explore new opportunities, domains, and challenges with data insights.
Our learners also read: Top Python Courses for Free
Previously, BI tools and systems were mainly controlled and managed by the IT department who extracted the intelligence manually and then forwarded it to data analysts for further interpretation. Data Science has changed this approach by collating all related actions simultaneously.
Data Science solutions and technologies are operated by data analysts, data scientists, and BI specialists who can focus on analyzing data to create actionable business predictions instead of committing their time to “IT housekeeping.”
By now it must be clear to you that Data Scientists and BI analysts are two different roles within an organization. While the former focuses on extrapolating past data to help companies mitigate potential business risks and challenges in the future, the latter focuses on interpreting past data to find answers to immediate questions and business challenges. Hence, Data Scientists and BI analysts both work hand-in-hand to equip companies with data-driven insights and help them to be prepared for the present and future business scenarios.
What unites Data Scientists and BI Analysts is their love and affinity towards data analysis. Both experts use advanced algorithms, tools, and frameworks in different capacities and degrees to empower companies with fact-based and highly accurate insights that can make or break a business.
Since Data Science and Business Intelligence are hot and trending fields in the industry right now, it pays extremely well to build Data Science and BI skills. And what’s better than enrolling in a certification course to develop industry-specific skills?
upGrad offers excellent Data Science and Business Analytics certification programs designed exclusively for both freshers and professionals:
Each of these programs is delivered through a combination of online lectures, live sessions, and peer-to-peer learning. Students gain in-depth subject knowledge while also obtaining hands-on experience while working on case studies and assignments. upGrad promises dedicated mentor support and placement assistance to candidates to help them launch their careers successfully.
A data scientist is a trusted advisor and strategic decision-maker in any organisation. A data scientist works with the data and demonstrates the results to the employees and the management. The process of data allows the users to track, measure and quantify their data and bring robust decision-making into the picture.
A data scientist examines and explores the organisation’s data based on which they recommend and prescribe actions which help in improving the institution’s performance, engagement of customers, data handling, etc.
A data is useful in exploring the opportunities one can delve themselves into which helps identify the opportunities. The data scientists get to understand the analytics and get into asking questions to develop additional methods. This is another main difference between business intelligence and data science.
It is important to make decisions which are impactful and are based on scientific methods. But, it is equally important to test if the decisions that were taken have been beneficial to the organisation or not. This is one of the differences between a business intelligence analyst vs data scientist.
upGrad’s Exclusive Data Science Webinar for you –
Watch our Webinar on How to Build Digital & Data Mindset?
Companies can gain insights into the buying behaviour and trends of their customers. Once the trend, motivation, and buying behaviour of the customers is understood, the companies can use this information to create many relevant products which can help them to grow faster. This is another example of the data science vs business intelligence difference.
The organisations which use business intelligence have better control over their operating procedures. The technology of business intelligence allows users to better identify the gap areas and what is lacking in their current reports.
It is essential for any organsiation to understand and grasp the real insights of their sales. The sales and marketing team constantly keep track of their customers and carry forward various strategic initiatives. It is useful in getting the analysis of the sales insights.
The technology of business intelligence helps gain insights into what the customers are doing. It is also useful in making the organisation make educated decisions.
So, are you ready to build a career in Data Science?
The structure of the Data Science program is designed to help you master the skills required to excel in the field. Understanding the differences between data science vs business intelligence can give you a competitive edge in making data-driven decisions and optimizing business strategies. upGrad’s industry-relevant curriculum equips you with the right knowledge and expertise to land top opportunities in the market. Register today to begin your learning journey with upGrad!
Learn data science courses from the World’s top Universities. Earn Executive PG Programs, Advanced Certificate Programs, or Masters Programs to fast-track your career.
Get Free Consultation
By submitting, I accept the T&C and
Privacy Policy
Start Your Career in Data Science Today
Top Resources