- Blog Categories
- Software Development
- Data Science
- AI/ML
- Marketing
- General
- MBA
- Management
- Legal
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- Software Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Explore Skills
- Management Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
Data Visualisation: The What, The Why, and The How!
Updated on 25 November, 2022
6.51K+ views
• 10 min read
In this article, we’ll walk you through the world of Data Visualisation. We’ll begin by understanding what is Data Visualisation, after which we’ll see the actual need of DV tools and some of the common Data Visualisations used in practice today. Going further, we’ll talk about the essential tools you must be aware of if you’re setting foot in the world of Visualisation of Big Data.
But before we get to that, let’s get you to understand the importance of Data Visualisation using a very common example. Take a look at the images below:
Which of the above two arrangements makes it easier for you to browse through all the books quickly and efficiently? The second one, isn’t it? That’s the power of visualisation. Now, think a step further. In our example, we were just looking at a handful of books. In the real world, on the other hand, the problem of visualisation is HUGE. There’s so much data with the organisations at present that it’s impossible to make sense of it without proper representation of it all. That’s exactly where Data Visualisation and its tools come in!
By now you’ve understood what exactly is Data Visualisation. Yet, for the sake of a formal definition, here it goes: Data Visualisation is, quite simply, the process of converting huge datasets into concise and unequivocal patterns and shapes (graphs, charts, scatter plots, and such things) to make it easier for people to understand it. Data Visualisation can be carried out in many modes, depending on the requirement. Some of them are – Graphs, Columns, Venn Diagrams, Pie charts, Network/Colour Maps, Trees, Frequency Polygons, Box-and-whisker plots; Line, Surface, and Volume Scatter Plots and so on.
Data Visualisation: Need of the hour!
Now that we know what Data Visualisation is, let’s try and understand why it is the “need of the hour”. We’ve understood it helps organisations get insights into their data – now, let’s see how!
Helps the organisation absorb data quickly:
Your Big Data will look gibberish to your organisation if you don’t present it in a concise and understandable way. As you know, a picture is worth a thousand words – or, in this case, worth a gazillion lines of data. Presentable display of data will help all the verticals of your organisation understand the data with utmost ease. That, in turn, will allow them to absorb the data better – without having to spend a lot of time on it.
Helps you plan your next steps better:
Think of DV as solving a jigsaw puzzle. If you have a thousand puzzle pieces, it’s quite a task to get going with arranging the pieces. But once you have even half of your pieces in place, you can easily figure out the next steps. Likewise, from these visual trends, you can easily figure out your next best steps without wasting too much time or energy on data analysis. You can save a lot of time and money by looking at the big picture, instead of trying to look at a thousand puzzle pieces.
Get Started in Data Science with Python
Get your audience interested in your data:
Nowadays, people have the attention span shorter than that of a goldfish. Keeping that in mind, it’s important for you to present your audience with something that they can grasp quickly – even with a cursory glance. Converting your data into graphics engages your audience as they now feel in control of the situation as they can understand the representation as opposed to understanding the whole datasets – “Graphs? That sounds good!”
Find the outliers in your dataset:
This is probably the most important use case of Data Visualisation. It helps you quickly find out the outliers, if any, in your datasets. If you get down to imagining, you’ll realise this is indeed a challenge without proper visualisation. Outliers tend to drag down data the averages in the wrong direction, so, it’s essential to find and eliminate them from your analysis when they skew the results. Graphics always make it easier to understand the presence of an outlier and take any required steps against it.
Act quickly on your findings:
Visualisation of data in the form of graphics helps you in making much faster decisions. By using Data Visualisations, you can review your strategies, make updates, and achieve success – all of this without wasting a lot of time and energy. Analyzing the graphical representation of any dataset will allow you to act better on your findings as compared to analyzing the whole dataset.
Exploratory Data Analysis and its Importance to Your Business
Ten Data Visualisation Tools You Should Master
QlikView
QlikView markets itself as a “business discovery platform”. Its ability to process data in-memory makes it a perfect tool for quick-and-dirty processing of data. Talking about sources, QlikView can read data from almost any source – from CSV files to SQL databases. It also performs data integration (combination of data from various sources) and generates composite data sources for better analysis. QlikView targets businesses that are looking to get deeper insights on the data generated by their endeavours.
Explore our Popular Data Science Certifications
Our learners also read: Top Python Courses for Free
upGrad’s Exclusive Data Science Webinar for you –
Watch our Webinar on The Future of Consumer Data in an Open Data Economy
Tableau
Tableau, too, is a business intelligence tool for visual ananlysis of data. It allows users to create and distribute a very intuitive dashboard which depicts all the variations, trends, and density of the data in for on charts or graphs. Tableau can read data from files, relational databases, and Big Data sources. Its unique feature is that it allows real-time collaboration. It’s put to use by academic researchers, businesses, and many government organisations.
Wolfram Alpha
You can’t talk about numbers, statistics, and visualisations without mentioning Wolfram Alpha. It is an open source statistics search/calculation engine which can also produce beautiful, informative, and customizable representations in the form of charts and graphs If you are using publicly available data in your analysis, the charts generated can very easily be uploaded to your website using widgets.
The What’s What of Data Warehousing and Data Mining
Top Data Science Skills to Learn
MS-Excel
We often forget the old warhorses in our search for specific tools. How can we talk about data visualisation and not mention the classic MS-Excel? Chances are, you’ve had some experience with Excel, irrespective of your background. Excel has stood the harsh test of time and is still extensively used. You must be aware of the famous Spreadsheet visualisation.
Excel can turn out to be quite a powerful tool – almost as powerful as the other mentions, if the requirements don’t go beyond the basics. However, a major drawback of Excel is that customised data visualisation is difficult, thus it’s a bad candidate for work that has specific requirements.
Read our popular Data Science Articles
CartoDB
All the other tools in this list talk primarily about processing quantitative data. Now suppose you have to integrate this data with maps? CartoDB is the tool you need. It allows seamless integration of data in tabular form with maps. To see the magic, you can upload a CSV file containing a list of addresses to CartoDB and it’ll convert them to latitudes and longitudes and plot them on a map. The only disadvantage is that you need to pay for it after using it for 5 times.
Apart from the tools mentioned above, there are some other tools, too, that deserve a mention:
- MatPlotLib: It is a multi-platform library built for Data Visualisation using Python.
- ChartBlocks: ChartBlocks is a web app that lets you create beautiful, customizable, and shareable charts – you can also download them as vector graphics.
- Charted: Charted automatically builds beautiful charts, you just need to provide it with the link to your data file.
- D3.JS: It is a Javascript library that helps you build visualisations using HTML and CSS.
- Dygraphs: It is a fast, open-sourced Data Visualisation library provided by Javascript.
Top Steps to Mastering Data Science, Trust Me I’ve Tried Them
Learn data science courses from the World’s top Universities. Earn Executive PG Programs, Advanced Certificate Programs, or Masters Programs to fast-track your career.
Wrapping Up…
If you were paying attention, you’d have realised that data visualisation is by no means a “new” technology. We’ve been doing it for ages – take the example of a 2-D cartesian plane, or the 3-D coordinate system, which is a visualisation of data as well. It’s just that businesses are waking up to the need for Data Visualisation in context of Big Data Analytics.
So, if you’re looking to begin a career in Big Data, mastering Data Visualisation is sure to take you a long way! check out IIIT-B & upGrad’s PG Diploma in Data Science which is created for working professionals and offers 10+ case studies & projects, practical hands-on workshops, mentorship with industry experts, 1-on-1 with industry mentors, 400+ hours of learning and job assistance with top firms.
Frequently Asked Questions (FAQs)
1. How does data visualization work?
The process of data visualization involves handling large amounts of data that can be converted into meaningful visuals that are easy to interpret. To do this, data scientists use software tools that can help manage various data types such as files, API data, database maintained sources among others. Scientists use these software to show trends, simple analysis in the form of graphs and charts, evidence, comparison and summary. For instance, finding the top value from a year’s worth of data is easier if you have plotted it visually using widgets.
2. What are the benefits of Data Visualization ?
Data visualisation brings numbers and facts to life by representing the data in an easy to digest, visual format. Thanks to data visualization, one can interpret vast amounts of data in a clear and concise manager, identifying patterns, trends, anomalies etc. Data visualization also empowers your storytelling as it allows you to build dashboards and convert them into storytelling to create a powerful narrative. Since humans can process visual images faster than text, data visualisation facilitates the decision making process.
3. How can you make Data Visualization more effective?
Making data visualization more effective and impactful requires a combination of data science, design and communication. It is the art of communicating complex ideas with clarity, precision and efficiency. A good visualization should establish connections within data that are too difficult to communicate with words and make it easier for the users to interpret the information shown along with the possible outcomes from the data. The visuals should convey how the data relates to the business concerns, using metrics that are easily understandable and speak to the audience.