- Blog Categories
- Software Development
- Data Science
- AI/ML
- Marketing
- General
- MBA
- Management
- Legal
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- Software Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Explore Skills
- Management Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
Data Visualization in Python: Fundamental Plots Explained [With Graphical Illustration]
Updated on 13 June, 2023
6.11K+ views
• 10 min read
Table of Contents
Basic Design Principles
For any aspiring or successful data scientist, being able to explain your research and analysis is a very important and useful skill to possess. This is where data visualization comes into the picture. It is vital to use this tool honestly as the audience can be very easily misinformed or deceived by poor design choices.
As data scientists, we all have certain obligations in the matter of preserving what is true.
The first is that we should be completely honest with ourselves while cleaning and summarizing the data. Data pre-processing is a very crucial step for any machine learning algorithm to work and so any dishonesty in the data will lead to drastically different results.
Another obligation is towards our target audience. There are various techniques in data visualization which are used to highlight specific sections of data and make some other pieces of data less prominent. So if we are not careful enough, the reader will not be able to explore and judge the analysis properly which can lead to doubts and a lack of trust.
Always questioning oneself is a good trait to have for data scientists. And we should always think about how to show what truly matters in an understandable as well as aesthetically pleasing way, while also remembering that context is important.
This is exactly what Alberto Cairo tries to portray in his teachings. He mentions the Five Qualities of Great Visualizations: beautiful, enlightening, functional, insightful, and truthful which are worth keeping in mind.
How To Choose Visualization Type?
The following tips can help you choose the most suitable data visualization using Python.
- When accurate quantities of numbers must be known, the tabular format works best.
- When attempting to visualize continuous data across time, line charts work best.
- The ideal applications for bar charts are comparisons between categories.
- Pie charts work best when comparing pieces to the entire picture.
- A heat map is the easiest way to display a geographic representation of data.
- Scatter charts work well when displaying values for two variables from a dataset. They are excellent at illuminating the general relationship in a huge body of information.
- Area charts monitor changes over time for one or more groups.
- Scatter plots can illustrate and demonstrate the relationships between three variables using a bubble chart.
- A box plot displays the distribution’s shape, center, and variability.
Some Fundamental Plots
Now that we have a basic understanding of design principles, let’s dive into some fundamental visualization techniques using the matplotlib library in python.
All the code below can be executed in a Jupyter notebook.
%matplotlib notebook
# this provides an interactive environment and sets the back end. (%matplotlib inline can also be used but it’s not interactive. This means that any further calls to plotting functions will not automatically update our original visualization.)
import matplotlib.pyplot as plt # importing the required library module
Point Plots
The simplest matplotlib function to plot a point is plot(). The arguments represent X and Y coordinates, then a string value that describes how the data output should be shown.
plt.figure()
plt.plot( 5, 6, ‘+’ ) # the + sign acts as a marker
Scatterplots
A scatterplot is a two-dimensional plot. The scatter() function also takes the X value as a first argument and Y value as the second. The plot below is a diagonal line and matplotlib automatically adjusts the size of both axes. Here, the scatter plot doesn’t treat the items as a series. So, we can also give in a list of desired colors corresponding to each of the points.
import numpy as np
x = np.array( [1, 2, 3, 4, 5, 6, 7, 8] )
y = x
plt.figure()
plt.scatter( x, y )
Explore our Popular Data Science Online courses
Histogram
A histogram is another method of data visualization in Python. It is a graphic depiction of a frequency distribution of grouped continuous classes. In essence, a histogram shows data divided into multiple groups. It is a technique to graphically represent the distribution of numerical data. As shown in the figure below, the X-axis in a histogram displays the bin ranges, a total bill in this case, and the Y-axis displays the count.
The syntax used for the histogram:
sns.histplot(x='totalbill', data=data, kde=True)
plt.show()
Heatmaps
A heatmap is a Python visualisation method that allows the visualization of a correlation matrix, time-series movements, temperature variations, and confusion matrix. You may visualize your data by using heatmaps. They can show significant correlations in your data in a variety of contexts.
The syntax used for heatmaps:
hm = sn.heatmap(data = data)
plt.show()
Line Plots
A line plot is created with the plot() function and plots a number of different series of data points like a scatter plot but it connects each point series with a line.
import numpy as np
linear_data = np.array( [1, 2, 3, 4, 5, 6, 7, 8] )
squared_data = linear_data**2
plt.figure()
plt.plot( linear_data, ‘-o’, squared_data, ‘-o’)
To make the graph more readable, we can also add a legend which will tell us what each line represents. A suitable title for the graph and both the axes is important. Also any section of the graph can be shaded using the fill_between() function to highlight relevant regions.
Read our popular Data Science Articles
plt.xlabel(‘X values’)
plt.ylabel(‘Y values’)
plt.title(‘Line Plots’)
plt.legend( [‘linear’, ‘squared’] )
plt.gca().fill_between( range ( len ( linear_data ) ), linear_data, squared_data, facecolor = ‘blue’, alpha = 0.25)
This is what the modified graph looks like-
Top Data Science Skills to Learn to upskill
SL. No | Top Data Science Skills to Learn | |
1 |
Data Analysis Online Courses | Inferential Statistics Online Courses |
2 |
Hypothesis Testing Online Courses | Logistic Regression Online Courses |
3 |
Linear Regression Courses | Linear Algebra for Analysis Online Courses |
Bar Charts
We can plot a bar chart by sending in arguments for the X values and the height of each bar to the bar() function. Below is a bar plot of the same linear data array we used above.
plt.figure()
x = range( len ( linear_data ))
plt.bar( x, linear_data )
# for plotting the squared data as another set of bars on the same graph, we have to adjust the new x values to make up for the first set of bars
new_x = []
for data in x:
new_x.append(data+0.3)
plt.bar(new_x, squared_data, width = 0.3, color = ‘green’)
# For graphs with horizontal orientation we use the barh() function
plt.figure()
x = range( len( linear_data ))
plt.barh( x, linear_data, height = 0.3, color = ‘b’)
plt.barh( x, squared_data, height = 0.3, left = linear_data, color = ‘g’)
#here is an example of stacking bar plots vertically
plt.figure()
x = range( len( linear_data ))
plt.bar( x, linear_data, width = 0.3, color = ‘b’)
plt.bar( x, squared_data, width = 0.3, bottom = linear_data, color = ‘g’)
Learn data science courses from the World’s top Universities. Earn Executive PG Programs, Advanced Certificate Programs, or Masters Programs to fast-track your career.
Our learners also read: Top Python Courses for Free
upGrad’s Exclusive Data Science Webinar for you –
ODE Thought Leadership Presentation
Advanced Visualization Techniques
In addition to the basic techniques, some advanced techniques are as follows:
- Network Visualization: It helps visualize relationships between entities like social networks, supply chain networks, and transportation networks. You can opt for NetworkX and Gephi to carry out network visualization in Python. While NetworkX is ideal for creating, manipulating, and studying complex networks, Gephi helps with network analysis.
- Geographic Visualization: It is a useful technique to display data on a map. You can depict demographic, transportation, or even environmental data. Carry out geographic visualization in Python using libraries like Basemap and Folium. Basemap for plotting 2D data on maps and Folium for creating interactive maps with Leaflet.js.
- 3D Visualization: This technique is best for representing data in a three-dimensional space. Some Python libraries, namely Matplotlib, Mayavi, and Plotly are suitable for 3D visualization.
Conclusion
The visualization types don’t just end here. Python also has a great library called seaborn which is definitely worth exploring. Proper information visualization greatly helps increase the value of our data. Data visualization will always be the better option for gaining insights and identifying various trends and patterns rather than looking through boring tables with millions of records.
If you are curious to learn about data science, check out IIIT-B & upGrad’s PG Diploma in Data Science which is created for working professionals and offers 10+ case studies & projects, practical hands-on workshops, mentorship with industry experts, 1-on-1 with industry mentors, 400+ hours of learning and job assistance with top firms.
Frequently Asked Questions (FAQs)
1. What are some useful Python packages for data visualization?
2. Seaborn - The Seaborn library is used for statistical representations in Python. It is developed on the top of Matplotlib and is integrated with Pandas data structures.
3. Altair - Altair is another popular Python library for data visualization. It is a declarative statistical library that allows you to create visuals with minimum possible coding.
4. Plotly - Plotly is an interactive and open-source data visualization library of Python. The visuals created by this browser-based library are supported by many platforms such as Jupyter Notebook and standalone HTML files.
2. What do you know about point plots and scatter plots?
The point plots are the most basic and simplest plots for data visualization. A point plot displays the data in the form of points on a cartesian plane. The “+” shows the increase in the value while “-” shows the decrease in the value over time.
A Scatter plot on the other hand is an optimized plot where the data is visualized on a 2-D plane. It is defined using the scatter() function that takes the x-axis value as the first parameter and the y-axis value as the second parameter.
3. What are the advantages of data visualization?
The following advantages show how data visualizations can become the real hero for an organization’s growth:
1. Data visualization makes it easier to interpret the raw data and understand it for further analysis.
2. After researching and analysing the data, the results can be displayed using meaningful visualizations. This makes it easier to connect with the audience and explain the results.
3. One of the most essential applications of this technique is to analyze patterns and trends to deduce predictions and potential areas of growth.
4. It also allows you to segregate the data according to customer preferences. You can also identify the areas that need more attention.