- Blog Categories
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Gini Index for Decision Trees
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Brand Manager Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Search Engine Optimization
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
Decision Tree in Machine Learning Explained [With Examples]
Updated on 23 September, 2022
11.33K+ views
• 9 min read
Introduction
Decision Tree Learning is a mainstream data mining technique and is a form of supervised machine learning. A decision tree is like a diagram using which people represent a statistical probability or find the course of happening, action, or the result. A decision tree example makes it more clearer to understand the concept.
The branches in the diagram of a decision tree shows a likely outcome, possible decision, or reaction. The branch at the end of the decision tree displays the prediction or a result. Decision trees are usually used to find a solution for a problem which gets complicated to solve manually. Let us understand this in detail with the help of a few decision tree examples.
A decision tree is one of the popular as well as powerful tools which is used for prediction and classification of the data or an event. It is like a flowchart but having a structure of a tree. The internal nodes of the trees represent a test or a question on an attribute; each branch is the possible outcome of the question asked, and the terminal node, which is also called as the leaf node, denotes a class label.
In a decision tree, we have several predictor variables. Depending upon these predictor variables, try to predict the so-called response variable.
Top Machine Learning and AI Courses Online
Enrol for the Machine Learning Course from the World’s top Universities. Earn Masters, Executive PGP, or Advanced Certificate Programs to fast-track your career.
Related Read: Decision Tree Classification: Everything You Need to Know
Decision Tree in ML
By representing a few steps in the form of a sequence, the decision tree becomes an easy and effective way to understand and visualize the possible decision options and the potential outcomes from the range. The decision trees are also helpful in identifying possible options and weighing the rewards and risks against each course of action that can be yielded.
A decision tree is deployed in many small scale as well as large scale organizations as a sort of support system in making decisions. Since a decision tree example is a structured model, the readers can understand the chart and analyse how and why a particular option may lead to a corresponding decision. The decision tree example also allows the reader to predict and get multiple possible solutions for a single problem, understand the format, and the relation between different events and data with the decision.
Each result in the tree has a reward and risk number or weight assigned. If you ever use a decision tree, then you will have every final result with a possible drawback and benefit. To conclude your tree properly, you can span it as short or as long as needed depending on the event and the amount of data. Let us take a simple decision tree example to understand it better.
Consider the given data which consists of the details of people like: whether they are drinker, smoker, their weight, and the age at which these people died.
Name | Drinker | Smoker | Weight | Age (Died) |
Sam | Yes | Yes | 120 | 44 |
Mary | No | No | 70 | 96 |
Jonas | Yes | No | 72 | 88 |
Taylor | Yes | Yes | 55 | 52 |
Joe | No | Yes | 94 | 56 |
Harry | No | No | 62 | 93 |
Let us try to predict if the people will die at a younger age or older age. The characteristics like drinker, smoker, and the weight will act as a predictor value. Using these, we will consider age as a response variable.
Let us label that people who died before the age of 70 died “young” and people who died after the age of 70 died “old”. Let us now predict the response variable based on the predictor variable. Given below is a decision tree made after learning the data.
The decision tree above explains that, if a person is a smoker, they die young. If a person is not a smoker, then the next factor considered is if the person is a drinker or not. If a person is not a smoker and not a drinker, the person dies old.
If a person is not a smoker and is a drinker, then the weight of the person is considered. If a person is not a smoker, is a drinker, and weighs below 90 kg, then the person dies old. And lastly, if a person is not a smoker, is a drinker, and weighs above 90 kg, then they die young.
From the data given let’s take Jonas’ example to check if the decision tree is classified correctly and if it predicts the response variable correctly. Jonas is not a smoker, is a drinker, and weighs under 90 kg. According to the decision tree, he will die old (age at which he dies>70). Also, according to the data, he died when he was 88 years old, this means the decision tree example has been classified correctly and worked perfectly.
But did you ever wonder about the basic idea behind the working of a decision tree? In a decision tree, the set of instances is split into subsets in a manner that the variation in each subset gets smaller. That is, we want to reduce the entropy, and hence, the variation is reduced and the event or instance is tried to be made pure.
Let us consider a similar decision tree example. Firstly, we consider if the person is a smoker or not.
Here, we are uncertain about the non-smokers. So, we split it into drinker and nondrinker.
We can see from the diagram given below that we went from a high entropy having large variation to reducing it down to a smaller class in which we are more certain about. In this manner, you can incrementally build any decision tree example.
Let us construct a decision tree using the ID3 Algorithm. What is more important in the decision tree is a strong understanding of Entropy. Entropy is nothing but the degree of uncertainty. It is given by:
(At times, it is also denoted by “E”)
If we apply it to the above example, it will go as follow:
Consider the case when we don’t have people split into any category. It is a worst-case scenario (high entropy) when both types of people have the same amount. The ratio here is 3:3.
Similarly, for people who do not drink, have 1:1 ratio and the entropy would be 1. Thus, it needs a further split due to uncertainty. For people who do not drink, the ratio is 2:0. Hence, the entropy is 0.
Now, we have computed the entropy for the different cases and hence, we can calculate the weighted average for the same.
For the first branch, E=661=1
For the Smoker class, E=260+ 460.811=0.54
For the smoker and drinker class, E=260+ 261+260=0.33
The diagram below will help you in quickly understanding the above calculations.
Finally, the information gain:
Class | Entropy | Information gain (E2-E1) |
People | 1 | 0.46 |
Smoker | 0.54 | 0.21 |
Smoker+Drinker | 0.33 | – |
Also Read: Decision Tree Interview Questions & Answers
Conclusion
We have successfully studied decision trees in-depth right from the theory to a practical decision tree example. We also constructed a decision tree using the ID3 algorithm. If you found this interesting, you might love to explore data science in detail.
If you’re interested to learn more about decision trees, machine learning, check out IIIT-B & upGrad’s PG Diploma in Machine Learning & AI which is designed for working professionals and offers 450+ hours of rigorous training, 30+ case studies & assignments, IIIT-B Alumni status, 5+ practical hands-on capstone projects & job assistance with top firms.
Trending Machine Learning Skills
Popular AI and ML Blogs & Free Courses
Frequently Asked Questions (FAQs)
1. What are decision trees?
Decision trees are used to visually organize and organize decision making information. The trees are drawn such that the root is at the top and the leaves are at the bottom. The decision trees are read from the bottom up, moving from left to right. Each level of the tree is a base for further testing and the decisions at each level will narrow the scope until the question is answered. A decision tree breaks a problem or decision into multiple sub-decisions and follows the logical path to the root, which is the primary goal. Decision trees are used to analyze the business environment, to prioritize and to provide insight, in order to make decisions on what direction to take.
2. What are the issues in decision tree learning in machine learning?
Decision trees can be used as a basis for testing new strategies or to explain strategies to others. A decision tree explains what will happen under a given set of assumptions. They can also be used to evaluate the performance of a strategy that was used in the past. Decision trees are known to be too susceptible to errors because of all their branches. Decision trees are not always accurate because, sometimes, they don’t take into account all possible variables, and the person analyzing the decision tree might not be experienced in all the aspects of the particular situation.
3. What kind of data is best for Decision Trees?
Decision Trees help you find patterns in data using a flow chart like structure. The best type of data would be qualitative, categorical and numerical. Although Decision Trees work with all types of data, they work best with numerical data. They must be able to have values that are numbers or there should be a way to translate them into numbers. Decision Trees are heavily dependent on the type of data as well as the quantity. If the number of data points is more than 100, Decision Trees would be a good model.
RELATED PROGRAMS