- Blog Categories
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Gini Index for Decision Trees
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Brand Manager Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Search Engine Optimization
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
Decision Tree in R: Components, Types, Steps to Build, Challenges
Updated on 03 July, 2023
7.38K+ views
• 8 min read
Table of Contents
- Why should I use a Decision Tree in R?
- Applications of Decision Trees
- Options in a decision tree
- What are the different parts of a decision tree in R?
- How can I use the decision tree in R?
- How do decision trees work in R?
- What are the different types of decision trees?
- Instructions for Creating R Decision Trees
- What are the steps involved in building a decision tree on R?
- Frequently Used R Decision Tree Algorithms
- What are the challenges of using a decision tree in R?
- Wrapping up
“Decision tree in R” is the graphical representation of choices that can be made and what their results might be. It is represented in the form of a graphical tree. Different parts of the tree represent various activities of the decision-maker. It is an efficient way of visually laying down the different possibilities and outcomes of a particular action.
Why should I use a Decision Tree in R?
You might question the importance of decision trees in R. Not only do decision trees lay out the problem and different solutions but also all the possible options. These options can be the challenges faced by the decision-maker to come up with a broader range of solutions.
It also helps analyze the different possible consequences of a problem and plan in advance. It gives a comprehensive framework so you can easily quantify the values of different outcomes also. This is particularly important when conditional probability comes into the picture.
Applications of Decision Trees
Decision trees are applied in the following fields:
Sales and Marketing – Decision trees are crucial in a decision-oriented industry like marketing. Specific organizations utilize decision tree regression to take deliberate action after understanding the effects of marketing activity. Decision trees help to break down large amounts of data sets into smaller subsets, making effective judgments that increase earnings and reduce losses.
Fraud and Anomaly Detection– Financial sectors are particularly vulnerable to fraud. These businesses use decision trees to give them the information they need to identify fraudulent consumers and filter out abnormal or fraudulent loan applications, information, and insurance deals.
Health Diagnosis– Classification trees help doctors identify people at risk of developing major illnesses like diabetes and cancer.
Low churn rate- Banks utilize decision tree regression in machine learning algorithms to keep their clients. Since keeping consumers is usually less expensive than finding new ones, analyzing which consumers are most likely to stop doing business with a bank can be profitable. Authorities can make judgments based on the results and respond by offering improved services, discounts, and a variety of other features. Ultimately, this lowers the churn rate.
Options in a decision tree
- Maximum Depth- This specifies how many depth levels a tree may be shaped at.
- Minimum Number of Records in Terminal Nodes – This is important for figuring out how many records a terminal node will accept at the most. The split is not implemented if it lowers the results below the predetermined level.
- Differentiated Clusters Output
- The minimal number of records in the parent node is comparable to the minimum number of records in the terminal nodes we previously mentioned. The application where a split takes place is where the distinction resides. The split procedure is terminated if the number of records is much fewer than provided.
- When the chi-square statistic for a categorical input is compared with the target test, modifications are made using the Bonferroni correction.
What are the different parts of a decision tree in R?
To understand and interpret what a decision tree means, you have to understand what the different parts of a decision tree are. You might come across these terms very often when you look at decision trees.
- Nodes: The nodes of a tree represent an event that has taken place or a choice that the decision-maker has to make.
- Edges: These are the different conditions or rules that are set.
- Root Node: This shows the entire population or sample in case of a visualization of a sample.
- Splitting: This is when the node is divided into sub-nodes.
- Decision nodes: These are the specific sub-nodes that split further.
- Leaf: These are the end-terms or the nodes that do not split also.
- Pruning: This is the removal of sub-nodes of a decision node.
- Branch: These are sub-sections of an entire decision tree.
Read: Data Science vs Decision Science
How can I use the decision tree in R?
Since decision trees can only be made in R, you need to install R first. This can be done very quickly online. After you download R, you have to create and visualize packages to use decision trees. One package that allows this is “party”. When you type in the command install.package (“party”), you can use decision tree representations. Decision trees are also considered to be complicated and supervised algorithms.
How do decision trees work in R?
Decision trees are more often used in machine learning and data mining when you are using R. The essential element used in this case is the observed or training data. After this, a comprehensive model is created. A set of validation data is also used to upgrade and improve the decision tree.
Learn more: Data Visualization in R programming
What are the different types of decision trees?
The most important types of decision trees are the Classification and Regression Trees. These are generally used when the inputs and outputs are categorical.
Classification Trees: These are tree models where the variable can take a specific set of values. In these cases, the leaves represent the class labels, while the branches represent the conjunctions of a different feature. It is generally a “yes” or “no” type of tree.
Regression Trees: There are decision trees that have a variable which can take continuous values.
When you combine both the above type of decision trees, you get the CART or classification and regression trees. This is an umbrella term, which you might come across several times. These refer to the above-mentioned procedures. The only difference in these two is the type of dependent variables – either categorical or numeric.
Instructions for Creating R Decision Trees
Decision Trees help to create recursive partitioning algorithms. The following are the steps to follow for creating decision tree algorithms:
- First, the best strategy for data splitting should be evaluated quantitatively for each input variable.
- The optimal split should be chosen, and then the data should be divided into subgroups following the split’s structure.
- After choosing a subgroup, we repeat step 1 for each of the underlying subgroups.
- Once the split corresponding to the same target variable value is reached, the splitting must continue until it stops.
What are the steps involved in building a decision tree on R?
Step 1: Import- Import the data set that you want to analyze.
Step 2: Cleaning- The data set has to be cleaned.
Step 3: Create a train or test set- This implies that the algorithm has to be trained to predict the labels and then used for inference.
Step 4: Build the model- The syntax rpart() is used for this. This means that the nodes keep splitting till a point is reached wherein further splitting is not possible.
Step 5: Predict your dataset- Use the syntax predict() for this step.
Step 6: Measure performance- This step shows the accuracy of the matrix.
Step 7: Tune the hyper-parameters- To control the aspects of the fit, the decision tree has various parameters. The parameters can be controlled using the rpart.control() function.
Frequently Used R Decision Tree Algorithms
The three most typical Decision Tree Algorithms are as follows:
- CART (Classification and Regression Tree) examines a wide range of factors.
- The goal of Zero (created by J.R. Quinlan) is to maximize the knowledge gained by assigning each person to a branch of the tree.
- Chi-Square Automation Interaction Detection (CHAID) is used to investigate discrete, qualitative, independent, and dependent variables.
Also Read: R Tutorial for Beginners
Explore our Popular Data Science Certifications
What are the challenges of using a decision tree in R?
Pruning can be a tedious process and needs to be done carefully to get an accurate representation. There can also be high instability in case of even a small change. So, it is highly volatile, which can be troublesome for users, especially beginners. Moreover, it can fail to produce desirable outcomes and results in a few cases.
Learn data science courses from the World’s top Universities. Earn Executive PG Programs, Advanced Certificate Programs, or Masters Programs to fast-track your career.
Read our popular Data Science Articles
upGrad’s Exclusive Data Science Webinar for you –
Transformation & Opportunities in Analytics & Insights
Top Data Science Skills to Learn
Wrapping up
If you want to make an optimal choice while also being aware of what the consequences will be, make sure you know how to use the decision tree in R. It is a schematic representation of what might happen and what might not. There are several different components of a decision tree, which are explained above. It is a popular and powerful machine-learning algorithm to use.
Frequently Asked Questions (FAQs)
1. What is a decision tree and its categories?
A decision tree is a supporting tool that possesses a tree-like structure for modeling probable outcomes, possible consequences, utilities, and also the cost of resources. Decision trees make it easy to display different algorithms with the help of conditional control statements. A decision tree includes branches for representing different decision-making steps that eventually lead to a favorable result.
Based on the target variable, there are two main types of decision trees.
1. Categorical Variable Decision Tree - In this decision tree, the target variables are divided into different categories. The categories will determine that every decision process will fall into either category, and there are no chances of in-betweens in any case.
2. Continuous Variable Decision Tree - There is a continuous target variable in this decision tree. For instance, if the income of any individual is unknown, then it could be known with the help of available information like age, occupation, and any other continuous variable.
2. What are the applications of decision trees?
There are two main applications of decision trees.
1. Using demographic data for finding prospective clients - Any organization can streamline its marketing budget for making informed decisions so that the money is spent at the right place with proper demographic data in mind.
2. Assessing prospective growth opportunities - Decision trees are helpful in evaluating the historical data for assessing the prospective growth opportunities in any business and help with expansion.
3. What are the pros and cons of decision trees?
Advantages-
1. Easy to read and interpret - You can easily read and interpret the outputs of decision trees even without any statistical knowledge.
2. Easy to prepare - Decision trees require very little effort for data preparation as compared to any other decision technique.
3. Less requirement of data cleaning - Decision trees require pretty little data cleaning as the variables are already created.
Disadvantages-
1. Unstable nature - The biggest limitation is that decision trees are highly unstable as compared to other decision techniques. Even if there is a small change in the data, it will reflect a huge change in the decision structure.
2. Less effective for predicting the outcomes of a continuous variable - When variables have to be categorized into several categories, decision trees tend to lose information.