Decision Tree in R: Components, Types, Steps to Build, Challenges
By Rohit Sharma
Updated on Jul 03, 2023 | 8 min read | 7.6k views
Share:
For working professionals
For fresh graduates
More
By Rohit Sharma
Updated on Jul 03, 2023 | 8 min read | 7.6k views
Share:
Table of Contents
“Decision tree in R” is the graphical representation of choices that can be made and what their results might be. It is represented in the form of a graphical tree. Different parts of the tree represent various activities of the decision-maker. It is an efficient way of visually laying down the different possibilities and outcomes of a particular action.
You might question the importance of decision trees in R. Not only do decision trees lay out the problem and different solutions but also all the possible options. These options can be the challenges faced by the decision-maker to come up with a broader range of solutions.
It also helps analyze the different possible consequences of a problem and plan in advance. It gives a comprehensive framework so you can easily quantify the values of different outcomes also. This is particularly important when conditional probability comes into the picture.
Decision trees are applied in the following fields:
Sales and Marketing – Decision trees are crucial in a decision-oriented industry like marketing. Specific organizations utilize decision tree regression to take deliberate action after understanding the effects of marketing activity. Decision trees help to break down large amounts of data sets into smaller subsets, making effective judgments that increase earnings and reduce losses.
Fraud and Anomaly Detection– Financial sectors are particularly vulnerable to fraud. These businesses use decision trees to give them the information they need to identify fraudulent consumers and filter out abnormal or fraudulent loan applications, information, and insurance deals.
Health Diagnosis– Classification trees help doctors identify people at risk of developing major illnesses like diabetes and cancer.
Low churn rate- Banks utilize decision tree regression in machine learning algorithms to keep their clients. Since keeping consumers is usually less expensive than finding new ones, analyzing which consumers are most likely to stop doing business with a bank can be profitable. Authorities can make judgments based on the results and respond by offering improved services, discounts, and a variety of other features. Ultimately, this lowers the churn rate.
To understand and interpret what a decision tree means, you have to understand what the different parts of a decision tree are. You might come across these terms very often when you look at decision trees.
Read: Data Science vs Decision Science
Since decision trees can only be made in R, you need to install R first. This can be done very quickly online. After you download R, you have to create and visualize packages to use decision trees. One package that allows this is “party”. When you type in the command install.package (“party”), you can use decision tree representations. Decision trees are also considered to be complicated and supervised algorithms.
Decision trees are more often used in machine learning and data mining when you are using R. The essential element used in this case is the observed or training data. After this, a comprehensive model is created. A set of validation data is also used to upgrade and improve the decision tree.
Learn more: Data Visualization in R programming
The most important types of decision trees are the Classification and Regression Trees. These are generally used when the inputs and outputs are categorical.
Classification Trees: These are tree models where the variable can take a specific set of values. In these cases, the leaves represent the class labels, while the branches represent the conjunctions of a different feature. It is generally a “yes” or “no” type of tree.
Regression Trees: There are decision trees that have a variable which can take continuous values.
When you combine both the above type of decision trees, you get the CART or classification and regression trees. This is an umbrella term, which you might come across several times. These refer to the above-mentioned procedures. The only difference in these two is the type of dependent variables – either categorical or numeric.
Decision Trees help to create recursive partitioning algorithms. The following are the steps to follow for creating decision tree algorithms:
Step 1: Import- Import the data set that you want to analyze.
Step 2: Cleaning- The data set has to be cleaned.
Step 3: Create a train or test set- This implies that the algorithm has to be trained to predict the labels and then used for inference.
Step 4: Build the model- The syntax rpart() is used for this. This means that the nodes keep splitting till a point is reached wherein further splitting is not possible.
Step 5: Predict your dataset- Use the syntax predict() for this step.
Step 6: Measure performance- This step shows the accuracy of the matrix.
Step 7: Tune the hyper-parameters- To control the aspects of the fit, the decision tree has various parameters. The parameters can be controlled using the rpart.control() function.
The three most typical Decision Tree Algorithms are as follows:
Also Read: R Tutorial for Beginners
Pruning can be a tedious process and needs to be done carefully to get an accurate representation. There can also be high instability in case of even a small change. So, it is highly volatile, which can be troublesome for users, especially beginners. Moreover, it can fail to produce desirable outcomes and results in a few cases.
Learn data science courses from the World’s top Universities. Earn Executive PG Programs, Advanced Certificate Programs, or Masters Programs to fast-track your career.
upGrad’s Exclusive Data Science Webinar for you –
Transformation & Opportunities in Analytics & Insights
If you want to make an optimal choice while also being aware of what the consequences will be, make sure you know how to use the decision tree in R. It is a schematic representation of what might happen and what might not. There are several different components of a decision tree, which are explained above. It is a popular and powerful machine-learning algorithm to use.
Get Free Consultation
By submitting, I accept the T&C and
Privacy Policy
Start Your Career in Data Science Today
Top Resources