- Blog Categories
- Software Development
- Data Science
- AI/ML
- Marketing
- General
- MBA
- Management
- Legal
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- Software Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Explore Skills
- Management Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
Decision Tree Interview Questions & Answers [For Beginners & Experienced]
Updated on 30 August, 2023
11.9K+ views
• 19 min read
In the world of machine learning, decision trees are by one of them, if not the most respectable, algorithm. Decision trees are mighty as well. Decision trees are used to both predict the continuous values (regression) or predict classes (perform classification or classify) of the instances provided to the algorithm.
Practicing decision tree interview questions beforehand can significantly increase your chances of nailing that knowledge-based round. Interview questions on decision tree can range in varied types, starting from basic explanatory ones to choosing the right statement from the pile.
Decision trees are similar to a flowchart in its structure. The node of any decision tree represents a test done on the attribute. Each and every branch of the decision tree is representative of the results of the examination conducted on each node. The node of every leaf (which is also known as terminal nodes) holds the label of the class.
That was about the structure of the tree; however, the surge in decision trees’ popularity is not due to the way they are created. The tree’s transparency gives it standing of its own in the world dominated with powerful and useful algorithms. You can actually do everything by hand for a small decision tree, and you can predict how the decision tree would be formed. For trees that are larger in size, this exercise becomes quite tedious.
However, that does not mean that you will not be able to understand what the tree is doing at each node. The ability to grasp what is happening behind the scenes or under the hood really differentiates decision trees with any other machine learning algorithm out there.
As we have seen how vital decision trees are, it is inherent that decision trees would also be critical for any machine learning professional or data scientist. To help you understand this concept and at the same time to help you get that extra zing in your interview flair, we have made a comprehensive list of decision tree interview questions and decision tree interview questions and answers.
These questions should help you ace any interview. By combining these questions and answers, you will be able to make your very own decision tree questions and answers pdf. Try to solve each of these questions first before reading the solutions to gain the most out of these questions.
Decision Tree Interview Questions & Answers
Q1. You will see two statements listed below. You will have to read both of them carefully and then choose one of the options from the two statements’ options. The contextual question is, Choose the statements which are true about bagging trees.
- The individual trees are not at all dependent on each other for a bagging tree.
- To improve the overall performance of the model, the aggregate is taken from weak learners. This method is known as bagging trees.
- Only statement number one is TRUE.
- Only statement number two is TRUE.
- Both statements one and two are TRUE.
- None of the options which are mentioned above.
Ans. The correct answer to this question is C because, for a bagging tree, both of these statements are true. In bagging trees or bootstrap aggregation, the main goal of applying this algorithm is to reduce the amount of variance present in the decision tree. The mechanism of creating a bagging tree is that with replacement, a number of subsets are taken from the sample present for training the data.
Now, each of these smaller subsets of data is used to train a separate decision tree. Since the information which is fed into each tree comes out to be unique, the likelihood of any tree having any impact on the other becomes very low. The final result which all these trees give is collected and then processed to provide the output. Thus, the second statement also comes out to be true.
Q2. You will see two statements listed below. You will have to read both of them carefully and then choose one of the options from the two statements’ options. The contextual question is, Choose the statements which are true about boosting trees.
- The weak learners in a boosting tree are independent of each other.
- The weak learners’ performance is all collected and aggregated to improve the boosted tree’s overall performance.
- Only statement number one is TRUE.
- Only statement number two is TRUE.
- Both statements one and two are TRUE.
- None of the options which are mentioned above.
Ans. If you were to understand how the boosting of trees is done, you will understand and will be able to differentiate the correct statement from the statement, which is false. So, a boosted tree is created when many weak learners are connected in series. Each tree present in this sequence has one sole aim: to reduce the error which its predecessor made.
If the trees are connected in such fashion, all the trees cannot be independent of each other, thus rendering the first statement false. When coming to the second statement, it is true mainly because, in a boosted tree, that is the method that is applied to improve the overall performance of the model. The correct option will be B, i.e., only the statement number two is TRUE, and the statement number one is FALSE.
FYI: Free nlp course!
Q3. You will see four statements listed below. You will have to read all of them carefully and then choose one of the options from the options which follows the four statements. The contextual question is, Choose the statements which are true about Radom forests and Gradient boosting ensemble method.
- Both Random forest and Gradient boosting ensemble methods can be used to perform classification.
- Random Forests can be used to perform classification tasks, whereas the gradient boosting method can only perform regression.
- Gradient boosting can be used to perform classification tasks, whereas the Random Forest method can only perform regression.
- Both Random forest and Gradient boosting ensemble methods can be used to perform regression.
- Only statement number one is TRUE.
- Only statement number two is TRUE.
- Both statements one and two are TRUE.
- Only statement number three is TRUE
- Only statement number four is TRUE
- Only statement number one and four is TRUE
Ans. The answer to this question is straightforward. Both of these ensemble methods are actually very capable of doing both classification and regression tasks. So, the answer to this question would be F because only statements number one and four are TRUE.
Q4 You will see four statements listed below. You will have to read all of them carefully and then choose one of the options from the options which follows the four statements. The contextual question is, consider a random forest of trees. So what will be true about each or any of the trees in the random forest?
- Each tree which constitutes the random forest is based on the subset of all the features.
- Each of the in a random forest is built on all the features.
- Each of the trees in a random forest is built on a subset of all the observations present.
- Each of the trees in a random forest is built on the full observation set.
- Only statement number one is TRUE.
- Only statement number two is TRUE.
- Both statements one and two are TRUE.
- Only statement number three is TRUE
- Only statement number four is TRUE
- Both statements number one and four are TRUE
- Both the statements number one and three are TRUE
- Both the statements number two and three are TRUE
- Both the statements number two and four are TRUE
Ans. The generation of random forests is based on the concept of bagging. To build a random forest, a small subset is taken from both the observations and the features. The values which are obtained after taking out the subsets are then fed into singular decision trees. Then all the values from all such decision trees are collected to make the final decision. That means the only statements which are correct would be one and three. So, the right option would be G.
Q5 You will see four statements listed below. You will have to read all of them carefully and then choose one of the options from the options which follows the four statements. The contextual question is, select the correct statements about the hyperparameter known as “max_depth” of the gradient boosting algorithm.
- Choosing a lower value of this hyperparameter is better if the validation set’s accuracy is similar.
- Choosing a higher value of this hyperparameter is better if the validation set’s accuracy is similar.
- If we are to increase this hyperparameter’s value, then the chances of this model actually overfitting the data increases.
- If we are to increase this hyperparameter’s value, then the chances of this model actually underfitting the data increases.
- Only statement number one is TRUE.
- Only statement number two is TRUE.
- Both statements one and two are TRUE.
- Only statement number three is TRUE
- Only statement number four is TRUE
- Both statements number one and four are TRUE
- Both the statements number one and three are TRUE
- Both the statements number two and three are TRUE
- Both the statements number two and four are TRUE
Ans. The hyperparameter max_depth controls the depth until the gradient boosting will model the presented data in front of it. If you keep on increasing the value of this hyperparameter, then the model is bound to overfit. So, statement number three is correct. If we have the same scores on the validation data, we generally prefer the model with a lower depth. So, statements number one and three are correct, and thus the answer to this decision tree interview questions is g.
Q6. You will see four statements listed below. You will have to read all of them carefully and then choose one of the options from the options which follows the four statements. The contextual question is which of the following methods does not have a learning rate as one of their tunable hyperparameters.
- Extra Trees.
- AdaBoost
- Random Forest
- Gradient boosting.
- Only statement number one is TRUE.
- Only statement number two is TRUE.
- Both statements one and two are TRUE.
- Only statement number three is TRUE
- Only statement number four is TRUE
- Both statements number one and four are TRUE
- Both the statements number one and three are TRUE
- Both the statements number two and three are TRUE
- Both the statements number two and four are TRUE
Ans. Only Extra Trees and Random forest does not have a learning rate as one of their tunable hyperparameters. So, the answer would be g because the statement number one and three are TRUE.
Q7. Choose the option, which is true.
- Only in the algorithm of random forest, real values can be handled by making them discrete.
- Only in the algorithm of gradient boosting, real values can be handled by making them discrete.
- In both random forest and gradient boosting, real values can be handled by making them discrete.
- None of the options which are mentioned above.
Ans. Both of the algorithms are capable ones. They both can easily handle the features which have real values in them. So, the answer to this decision tree interview questions and answers is C.
Q8. Choose one option from the list below. The question is, choose the algorithm which is not an ensemble learning algorithm.
- Gradient boosting
- AdaBoost
- Extra Trees
- Random Forest
- Decision Trees
Ans. This question is straightforward. Only one of these algorithms is not an ensemble learning algorithm. One thumb rule to keep in mind will be that any ensemble learning method would involve the use of more than one decision tree. Since in option E, there is just the singular decision tree, then that is not an ensemble learning algorithm. So, the answer to this question would be E (decision trees).
Q9. You will see two statements listed below. You will have to read both of them carefully and then choose one of the options from the two statements’ options. The contextual question is, which of the following would be true in the paradigm of ensemble learning.
- The tree count in the ensemble should be as high as possible.
- You will still be able to interpret what is happening even after you implement the algorithm of Random Forest.
- Only statement number one is TRUE.
- Only statement number two is TRUE.
- Both statements one and two are TRUE.
- None of the options which are mentioned above.
Ans. Since any ensemble learning method is based on coupling a colossal number of decision trees (which on its own is a very weak learner) together so it will always be beneficial to have more number of trees to make your ensemble method. However, the algorithm of random forest is like a black box. You will not know what is happening inside the model. So, you are bound to lose all the interpretability after you apply the random forest algorithm. So, the correct answer to this question would be A because only the statement that is true is the statement number one.
Best Machine Learning and AI Courses Online
Q10. Answer in only in TRUE or FALSE. Algorithm of bagging works best for the models which have high variance and low bias?
Ans. True. Bagging indeed is most favorable to be used for high variance and low bias model.
Q11. . You will see two statements listed below. You will have to read both of them carefully and then choose one of the options from the two statements’ options. The contextual question is, choose the right ideas for Gradient boosting trees.
- In every stage of boosting, the algorithm introduces another tree to ensure all the current model issues are compensated.
- We can apply a gradient descent algorithm to minimize the loss function.
- Only statement number one is TRUE.
- Only statement number two is TRUE.
- Both statements one and two are TRUE.
- None of the options which are mentioned above.
Ans. The answer to this question is C meaning both of the two options are TRUE. For the first statement, that is how the boosting algorithm works. The new trees introduced into the model are just to augment the existing algorithm’s performance. Yes, the gradient descent algorithm is the function that is applied to reduce the loss function.
Q12. In the gradient boosting algorithm, which of the statements below are correct about the learning rate?
- The learning rate which you set should be as high as possible.
- The learning rate which you set should not be as high as possible rather as low as you can make it.
- The learning rate should be low but not very low.
- The learning rate which you are setting should be high but not super high.
Check out: Machine Learning Interview Questions
Ans. The learning rate should be low, but not very low, so the answer to this decision tree interview questions and answers would be option C.
Popular AI and ML Blogs & Free Courses
Apart from these brainstorming interview questions on decision tree, below are some basic decision tree interview questions that you could also give a look at.
1.Explain what a decision tree algorithm is?
Decision tree algorithms can be explained as supervised learning algorithms that are majorly used in solving classification and regression problem statements. It functions by devising the larger dataset into smaller subsets and associating them with a decision tree simultaneously.
The final result of the methodology is a decision tree with decision nodes and leaf nodes Any decision tree can operate on both numerical and categorical data.
2.What are some of the most popular algorithms deriving decision trees?
Some of the most popular algorithms used for curating decision trees include
- CART (Classification and Regression Trees)
- ID3 (Iterative Dichotomiser)
- C4.5 (Successor of ID3)
3.Elaborate on the concept of the CART algorithm for decision trees.
CART or Classification and Regression Trees is an algorithm that helps search at the top level by searching for an optimum split. It continues by repeating the same process at every subsequent level.
At the same time, it also keeps verifying whether or not that split will lead to the lowest impurity. However, the solutions that this algorithm provides can not always be guaranteed to be optimal, yet it often provides solutions that are best suited. The reason behind it is that NP-Complete problems require exponential time complexity.
This helps make the problems more solvable even if they are in small training sets. This is the reason why opting for a best-fitting solution is better than looking for an optimal solution.
4.Explain the structure of a decision tree.
A decision tree is a flowchart-like structure consisting of multiple components. It has parts named internal nodes, branches, leaf nodes and paths. Each carries a unique attribute. Internal nodes represent the test of a feature such as the outcomes of a dice roll, branch represents the outcomes of the test, leaf nodes are used as class labels and paths help form the classification rules starting from root to leaf.
5.Mention the benefits of using decision trees.
The main advantage of using decision trees is that it is very simple to understand and explain at the same time. The best part is its ability to get visualized. A minute amount of data preprocessing is required yet it can handle both numerical and categorical data. Adding to that, it can also handle multiple output problems.
Here are the benefits of using decision trees:
- Interpretability: Decision trees offer a transparent and easy-to-understand model representation. The visual tree-like structure allows users to interpret and explain the decision-making process, making it ideal for both technical and non-technical stakeholders.
- Feature Importance: Decision trees provide insights into the importance of different features in the data. By analyzing the splits and nodes, we can identify which variables have the most significant impact on the target variable, aiding in feature selection and data understanding.
- Non-linear Relationships: Decision trees can handle non-linear relationships between variables, making them suitable for datasets with complex interactions. They can capture intricate patterns and interactions that linear models might miss.
- Handling Missing Data: Decision trees can handle missing data without requiring imputation. When making predictions, the algorithm simply follows the available branches in the tree, making it robust to missing values.
- Scalability: Decision trees can efficiently handle large datasets with minimal data preprocessing. They require relatively low computational resources compared to some other complex machine learning algorithms.
- Multi-output Problems: Decision trees can be extended to address multi-output problems, allowing them to handle multiple target variables simultaneously.
- Outlier Robustness: Decision trees are less affected by outliers compared to linear models. The hierarchical structure allows the algorithm to split data into regions, reducing the impact of extreme values.
- Ensemble Methods: Decision trees can be combined using ensemble methods like Random Forests and Gradient Boosting, further improving predictive performance and generalization.
- No Assumptions: Decision trees do not require the data to meet specific assumptions, making them more flexible and versatile for a wide range of datasets.
- Applicability to Both Classification and Regression: Decision trees can be used for both classification and regression tasks, making them versatile tools in machine learning.
6.State the relation between Random Forest and Decision Trees.
Random Forest falls under ensemble learning methods, which is a machine learning method where several base models are combined to produce one optimal predictive model. In the case of Random Forest, those base models are decision trees, hence it combines a number of decision trees in order to make the optimal prediction. A Random forest can be curated for solving both classification and regression problems.
Random Forest and Decision Trees are closely related in the field of machine learning, with Random Forest being an extension of the Decision Trees algorithm.
Decision Trees are a popular supervised learning algorithm used for both classification and regression tasks. They work by recursively splitting the data into subsets based on features to create a tree-like structure, where each node represents a decision based on specific feature values. The leaves of the tree correspond to the final decision or prediction.
Random Forest, on the other hand, is an ensemble learning method that builds multiple decision trees and combines their predictions to make a final decision. It introduces an element of randomness by using a technique called bootstrapping to create different subsets of the data for training each tree. Additionally, at each node, only a random subset of features is considered for splitting, which further adds diversity to the trees.
The relation between Random Forest and Decision Trees lies in their interdependence. Random Forest leverages the strength of Decision Trees while mitigating their weaknesses. Decision Trees are susceptible to overfitting, meaning they can learn the training data too well and perform poorly on new data. Random Forest addresses this issue by aggregating the predictions from multiple trees, reducing the risk of overfitting and improving the overall accuracy and robustness of the model.
7.What are the benefits of using Random Forest over Decision Trees?
The first and foremost reason for choosing Random Forest over Decision Trees is its availability to outperform the latter. Random Forest combines multiple Decision Trees hence giving the optimal output, yet it does not overfit the data as Decision Trees often do. The reason is the nature of training that Decision Trees have. They are trained on a very specific dataset, which results in overfitting. In the case of Random Forest, Decision Trees with different training sets can be accumulated together with the goal of decreasing the variance, therefore giving better outputs.
8.When can a node be considered Pure?
In order to find whether or not a node is pure, one has to take the help of the Gini Index of the data. If the Gini Index of the data is θ, that indicates all the elements belonging to a specific class, therefore, pure in nature.
9.How are the different nodes represented in a diagram?
There are three types of nodes that make up a decision tree and each uses different symbols. Decision nodes are characterized as squares and rectangles, Chance nodes are characterized by circles, and End nodes are characterized by triangles. Decision nodes are the points where a flow splits into multiple optional branches. Chance nodes are used for depicting the probability of certain results and End nodes exhibit the final outcomes of the decision path.
Hope these questions will add more value to your very own decision tree questions and answer pdf and make you fully prepared for your dream job interview. Also, don’t forget to glance at your decision tree questions and answers pdf to revise concepts before the d-day!
In-demand Machine Learning Skills
What Next?
If you’re interested to learn more about the decision tree, Machine Learning, check out IIIT-B & upGrad’s PG Diploma in Machine Learning & AI which is designed for working professionals and offers 450+ hours of rigorous training, 30+ case studies & assignments, IIIT-B Alumni status, 5+ practical hands-on capstone projects & job assistance with top firms.
Popular AI and ML Blogs & Free Courses
Frequently Asked Questions (FAQs)
1. How can the decision tree be improved?
A decision tree is A tool to create a simple visual aid in which conditional autonomous or decision points are represented as nodes and the various possible outcomes as leaves. In simple words, a decision tree is a model of the decision-making process. You can improve the decision tree by ensuring that the stop criteria is always explicit. When the stop criteria is not explicit it leaves one wondering if further exploration is necessary, and also leaves doubts about whether one should stop or not. The decision tree should also be constructed in such a way that it becomes easy to follow and not confuse the reader.
2. Why is decision tree accuracy so low?
Decision tree accuracy is lower than what we would have expected. This can happen due to the following reasons: Bad data - It is very important to use the correct data for machine learning algorithms. Bad data can lead to wrong results. Randomness - Sometimes, the system is so complex that it is impossible to predict what will happen in future. In this case, the accuracy of the decision tree will drop as well. Overfitting - The decision tree may not be able to capture the uniqueness of the data, and so it can be considered as a generalization. If the same data is used to adjust the tree, it can over-fit the data.
3. How is a decision tree pruned?
A decision tree is pruned using a branch and bound algorithm. A branch and bound algorithm finds the optimal solution to the decision tree by iterating through the nodes of the tree and bounding the value of the objective function at each iteration. The objective function is the value of the decision tree to the business. At each node, the algorithm either removes a branch of the tree or prunes a branch to a new node. The best part is that a branch can be pruned even if it leads to a non-optimal solution.
RELATED PROGRAMS