- Blog Categories
- Software Development
- Data Science
- AI/ML
- Marketing
- General
- MBA
- Management
- Legal
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- Software Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Explore Skills
- Management Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
Decision Trees in Machine Learning: Functions, Classification, Pros & Cons
Updated on 03 July, 2023
8.13K+ views
• 17 min read
Table of Contents
- What is a decision tree?
- How do you define a decision tree?
- How does a decision tree work?
- Classification or regression tree (CART)
- Importance of Decision Trees in Machine Learning
- Key Terminologies Associated with Decision Trees
- Types of Decision Trees in Machine Learning
- How to learn a CART model?
- How to avoid overfitting in a decision tree?
- Advantages of the decision trees approach
- Disadvantages of decision trees
- Conclusion
Every person has to take decisions in their lives. These decisions are situation-dependent. Taking the right decision helps face a situation in the best manner, solving the problem in the most straightforward way. In childhood, most of your decisions would revolve around what you eat and things related to your school.
Best Machine Learning and AI Courses Online
To Explore all our courses, visit our machine learning courses
As you grow up, your decisions start having a more serious implication on not only your life but also those of others too. At some point in your life, you will be taking decisions concerning your career or business. This analogy is to introduce you to the concept of a decision tree in machine learning.
Get Machine Learning Certification from the World’s top Universities. Earn Masters, Executive PGP, or Advanced Certificate Programs to fast-track your career.
What is a decision tree?
To start with, let us tell you that a decision tree is a predictive model or tool that supports decisions. It is known to deliver accurate inferences by using designs, design models, or representations that follow a tree-like structure. The primary objective of this model or machine learning model is to consider certain attributes of a target, and then make decisions on the basis of those attributes.
In-demand Machine Learning Skills
Most of the decisions in a decision tree follow conditional statements – if and else. For a decision tree model to be better than others, it will have a deeper structure and more complex rules governing it. It is one of the most preferred supervised learning models in machine learning and is used in a number of areas. It could appear like a flowchart that is designed keeping in mind algorithmic techniques to ensure that the splitting is done according to conditions.
The structure of this flowchart is quite simple. It has a root node that serves as the foundation of the building of the model. Then, some internal nodes and branches show features or tests and outcomes of tests, respectively. The leaf node represents a group with values that are similar to those values that are achieved when decisions on related attribute are made.
Decisions trees primarily find their uses in classification and regression problems. They are used to create automated predictive models that serve more than a few applications in not only machine learning algorithm applications but also statistics, data science, and data mining amongst other areas. These tree-based structures deliver some of the most accurate predictive models that are both easily interpretable and more stable than most of the other predictive models.
Unlike linear models that are only good for a certain number of problems, models based on decision trees can be used in mapping non-linear relationships, too. No wonder decision trees are so popular. One very important reason for this is how easy to understand the final decision tree model is. It can quite clearly describe what all was behind a prediction. They are also the basis of the more advanced collaborative or ensemble methods, including gradient boosting, bagging, and random forests amongst others.
How do you define a decision tree?
Now that we have developed a basic understanding of the concept let us define it for you. A decision tree is a supervised machine learning algorithm that can be used to solve both classification-based and regression-based problems. Let us see how it is used for classification.
Let us assume there is a data set that we are currently working on. We create a 2D plan that can be divided into different areas such that the points in each area are designated to the same class. The divisions or splits are denoted by a unique character. This is a binary tree that we are working on here.
Now, there are different things of this decision tree that don’t have a prior representation but are created using the training data provided to us. These things include the number of nodes that this tree will have, its edge positioning, and its structure. We won’t be creating the tree from scratch here. We will only be moving forwards, considering that our tree is already there.
Now, how can we classify new input points? We just have to move down the tree to do it. While traversing, we will continue putting up a question about the data point on reaching every node. For instance, when we ask this question at the root node, the answer would either let us branch right or left. The general rule is if the question asked is true of the condition put up in the condition is met, we have to branch left. If it isn’t true, we have to branch right. If our condition takes us to a left node, we would know what class an input point has to be assigned.
When it comes to how a decision tree is demonstrated, there are a few things that should never be forgotten. There is no rule or necessity that says that we have to alternate between the two coordinates of a decision tree while traversing it. We can choose to go with just a single feature or dimension. We need to keep in mind that decision trees can be used with a data set of any dimension. We have taken 2D data in our example, but that doesn’t mean that decision trees are just for two-dimension data sets.
Checkout: Types of Binary Tree
Have you ever been involved in a Twenty Questions contest? It is quite similar to how decision trees work. Let us find out how? The ultimate objective of the Twenty Questions game is to find out the object that the person answering the questions is thinking of while answering the questions. The questions can only be answered in a yes or a no.
As you move ahead in the game, you will know from the previous answers what specific questions to ask in order to get to the right answer before the game ends. A decision tree is your series of questions that helps you get to the ultimate answer by guiding you to ask more relevant questions.
Do you remember how you are directed to the person you want to speak to in a company by voicemail? You first speak to the computerized assistant and then press a series of buttons on your phones and enter a few details about your account before you reach the person you wanted to speak to in the first place. This could be a troublesome experience for you but this is how most companies use decision trees to help their customers reach the right department or talk to the right person. Also read 6 types of supervised learning you must know about.
How does a decision tree work?
Thinking about how to create a perfect decision tree? As we alluded to earlier, decision trees are a class of algorithms that are used to solve machine learning problems that belong to classification and regression types. It can be used for both categorical as well as continuous variables.
This algorithm has a simple way of moving forward – it partitions the data set or sample data into different sets of data with each data set grouped together sharing the same attributes. Decision trees employ a number of algorithms for different purposes – identify the split, most important variables, and the best result value that can produce more subdivisions going further.
Typically, the workflow of a decision tree involves the division of data into training and test data set, application of algorithms, and evaluation of model performance. Let’s understand how it works with a very simple example. Suppose we want to check whether a person is right for a job or not. This will be the root of the tree.
Now we move onto the features or attributes of the tree, which will constitute the internal nodes. Based on those attributes, decisions will be taken – the formation of branches of the tree. Let us make another assumption here. The parameter for a person considered right for the job is their experience of 5 or more years. The first division will take place on this parameter that we have just set.
We need more parameter sets for further splitting. These parameters could be about them belonging to a certain age group or not, carrying a certain degree or not, and so on. The results are depicted by the leaves of the tree, other than roots and branches. Leaves never split and depict the decisions. This tree will help you decide whether a candidate is right for the job or not.
As already mentioned, a decision tree has its own peculiar representation that enables it to solve a problem for us. It has roots, internal nodes, branches, and leaves, each serving a specific purpose or doing a specific job. These steps will help you make tree representation:
- The root of the tree features the optimized version of the best attribute
- Split the sample data into subsets using appropriate attributes. Ensure that the new subsets or groups of data don’t carry different values for the same attribute
- Repeat the above two steps until you have the leaves for every branch in your decision tree
Classification or regression tree (CART)
Let us take an example. Imagine we are given the task to classify job candidates on the basis of some pre-defined attributes to ensure that only deserving candidates are selected at the end of the process. The decision to select a candidate would depend on a real-time or possible event. All we need is a decision tree to find the right criteria for classification. The results would depend on how the classification is done.
Classification, as we all know, contains two steps. The first step involves building a random model on the sample data set. The second step involves prediction – the model trained in the first step is implemented to make a prediction regarding the response for given data.
Now, there are certain situations in which the target variable is a real number, or decisions are made on continuous data. You may be asked to make a prediction regarding the price of an item based on the cost of labour. Or you may be asked to decide the salary of a candidate based on their previous salary, skill set, experience, and other relevant information.
The value of the target value in these situations will either be some real value or value associated with a continuous data set. We will use the regression version of a decision tree to solve these problems. This tree will consider the observations made on an object’s features and train the model to make predictions and provide a continuous output that makes absolute sense.
Let us now talk about a few similarities and differences between classification and regression decision trees. Decision trees are used as classification models in situations where target variables are categorical in nature. The value that the training data set gets right at the culmination of a terminal node is equal to the value received when we take a mode of the observations for that particular section. In case any new observation is added to that section of the tree, we will replace it by the mode value, and then make the prediction.
On the other hand, decision trees are used as regression models when target variables are a part of a continuous data set. The value received at the same point that we discussed for classification trees, is the mean value of the observations in that section when it comes to regression trees.
There are a few similarities too. Both decision tree models use a recursive binary approach and divide independent variables into regions that don’t overlap with each other and are definite. In both these trees, division starts at the top of the tree, and the observations lie in one region. These observations split the variables into two branches. This division is a continuous process that gives way to a fully grown tree.
Read: Machine Learning Project Ideas
Importance of Decision Trees in Machine Learning
If you need an efficient method for making decisions, decision trees in machine learning can help. They make it easy to make decisions by highlighting the problem and describing the potential outcomes. It helps developers to evaluate the different consequences of a decision.
The decision tree algorithm in machine learning provides access to more data. As a result, it can help with predicting results for future data. Decision trees can simplify the process of developing outcomes through visual representation.
Key Terminologies Associated with Decision Trees
A few key terminologies associated with decision trees in machine learning are as follows:
- Decision node: Also known as the internal node, it is found within a decision tree where the node segments into two or more variables.
- Root node: It refers to the highest node of a decision tree that throws light on the decision or message.
- Leaf node: the leaf node denotes the terminal or external node. Since it comes last in the decision tree, it is far from the root node. Therefore, the leaf node does not have any children.
- Pruning: It involves reducing a decision tree to contain only the crucial nodes and outcomes.
- Splitting: It involves dividing one node into multiple parts. This is where the decision tree gets divided into variables.
Types of Decision Trees in Machine Learning
Decision trees can be classified into classification and regression trees. Together, they are referred to as the CART. The functions of these decision trees revolve around classifying and predicting. The two types of decision trees in machine learning are as follows:
Classification Trees
A decision tree classifier figures out whether some event has happened or not. It usually provides a “yes” or “no” outcome. A few examples of using classification trees are as follows:
Example: Homeownership Based on Income and Age
A decision tree classifier splits data sets according to the variables. In this example, we have two age and income as two variables for determining whether an individual is purchasing a home. Suppose you find out that 60% of people over the age of 30 have bought a house.
Here, the data will get split, and age will become the first node in the decision tree. The split makes the data pure to a certain extent. The second node will start addressing the income from where the first node ends.
Regression Trees
Regression trees are useful for predicting continuous values according to information sources from the past. It often helps programming algorithms predict what can happen while considering past trends or behavior.
Example: Predicting Housing Prices
Regression trees are extremely useful for predicting the price of a house by plotting on a graph. The regression model will help predict housing prices in the upcoming years with the help of prices in previous years.
This is linear regression because the price of houses will keep increasing with age. Machine learning helps to predict specific prices according to a true variable series from the past.
How to learn a CART model?
There are a few important things that you are required to do to create a CART model. These include choosing input variables as well as points of divisions in a way that the tree is properly constructed. The greedy algorithm that reduces the cost function is used to choose the input variables as well as the points of division.
The constriction of the tree is terminated with the help of the stopping criterion, which is defined in advance. The stopping criterion could mention anything, such as how many training instances are assigned to the tree’s leaf nodes.
1. Greedy algorithm: The input space has to be split correctly to build a binary tree. Recursive binary splitting is the greedy algorithm used for this purpose. It is a numerical method that involves lining up of different values. A cost function is then used to try and test several points of division. The division point with the minimum cost is chosen. This method is used to evaluate all points of division as well as input variables.
2. Tree pruning: Stopping criterion improves the performance of your decision tree. To make it even better, you can try pruning the tree after learning. The number of divisions a decision tree has tells a lot about how complex it is. Everyone prefers trees that are simpler than others. They don’t overfit data, and they are easily decipherable.
The best way to prune a tree is to look at every leaf node and find out how removing it will impact the tree. The removal of leaf nodes takes place when this action warrants a drop in the cost function. When you think that there is no way you can improve the performance further, you can stop this removal process. The pruning methods you can use include
3. Stopping criterion: The greedy splitting method mentioned that we talked about earlier has to have a stop command or condition to know when to stop. A common criterion is to take the number of instances that every leaf node has been assigned. If that number is reached, the division won’t happen, and that node will be considered the final one.
For example, let’s say that the predefined stopping criterion is mentioned as five instances. This number also says a lot about the exactness of the tree according to the training data. If it’s too precise or exact, it will result in overfitting, which means poor performance.
How to avoid overfitting in a decision tree?
Most decision trees are exposed to overfitting. We can build a decision tree that is capable of classifying the data in an ideal manner, or we can have a situation where we don’t have any attributes for the division. This won’t work too well with the testing data set; however, it would suit the training data set. You can follow any one of the two approaches that we are going to mention to avoid this situation.
You can either prune the tree if it is too large or stop its growth before it reaches that state of overfitting. In most cases, there is a limit defined to control the growth of the tress that mentions the depth, number of layers, and other things that it can have. The data set on which the tree needs to be trained will be divided into a test data set and a training data set. Both these data sets will have maximum depths on the basis of the training data set and will be tested against the testing data set. You can also use cross-validation along with this approach.
When you choose to prune the tree, you test the pruned editions of the tree against the original version. If the pruned tree does better than its version when it comes to testing against the test data set, leaves won’t be available to the tree as long as this situation persists.
Know more about: Decision Tree in R
Advantages of the decision trees approach
- It can be used with continuous as well as categorical data.
- It can deliver multiple outputs
- It can interpret precise results, and you can quantify and trust the reliability of trees
- With this method, you can explore data, find important variables, and find relationships between different variables for strengthening target variables and build new features in a lot less time.
- It is easy to understand and explain to others
- It is helpful in cleaning data. In comparison to other methods, it doesn’t take too much time as there is no impact of missing values and outliers on it after a certain point
- The efficiency and performance of decision trees are not affected by non-linear relationships between features
- It doesn’t take much time to prepare data as it doesn’t need missing value replacement, data normalization, and more.
- It is a non-parametric approach. It has nothing to do with designing and space arrangement of classifiers
Disadvantages of decision trees
- Some users can build decision trees that are too complex, even for their own liking. These trees don’t generalize the data as simpler trees do.
- Biased trees are often created due to the domination of certain classes. This is why it is very important to balance the sample data before it is used
- Sometimes these trees are not too stable. Data variations can result in the creation of a tree that doesn’t fit the bill. This anomaly is referred to as variance. It can be dealt with by using boosting and bagging.
- You can’t expect to get the best decision tree with greedy algorithms. To do away with this problem, you can train multiple trees.
Popular AI and ML Blogs & Free Courses
Conclusion
This blog discusses all the important things that a learner needs to know about decision trees. After reading this blog, you will have a better understanding of the concept, and you will be in a better position to implement it in real life.
If you’re interested to learn more about machine learning & AI, check out IIIT-B & upGrad’s PG Diploma in Machine Learning & AI which is designed for working professionals and offers 450+ hours of rigorous training, 30+ case studies & assignments, IIIT-B Alumni status, 5+ practical hands-on capstone projects & job assistance with top firms.
Frequently Asked Questions (FAQs)
1. What is the decision tree algorithm used for?
A part of the family of supervised learning algorithms, decision trees are one of the most widely used classification algorithms. It is very easy to understand as well as interpret, which accounts for its popularity. Decision trees can be employed to develop training models that can predict values of target variables based on simple decision instructions derived from historical training data. The best thing about the decision trees algorithm is it can be efficiently used to solve classification and regression problems, which other supervised learning algorithms cannot be applied to. Different kinds of decision trees can be used based on the type of target variable.
2. What are the applications of Decision Tree Algorithm?
In AI, the decision trees algorithm comes with a wide array of applications. Some of the most interesting applications of decision trees include evaluating potential growth opportunities for companies on the basis of historical data. For this, historical sales data can help decision trees indicate possible routes for further business expansion and growth. Decision trees can also be used to find potential clients using demographic information. Besides, financial institutions can also apply decision trees to create predictive models for assessing the creditworthiness of customers and defaulters in loans.
3. What other algorithms are used in Artificial Intelligence?
Algorithms used in Artificial Intelligence can be broadly categorized into three parts – Regression Algorithms, Classification Algorithms, and Clustering Algorithms. Classification algorithms are used to classify data sets in a particular way. Clustering algorithms are applied to entire sets of data to find differences and similarities between specific data points. It can be used to point out people of the same age among a large group of customers. Regression algorithms are helpful in forecasting future outcomes depending on the input data. For instance, regression algorithms can be used to design models for predicting the weather.
RELATED PROGRAMS