- Blog Categories
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Gini Index for Decision Trees
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Brand Manager Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Search Engine Optimization
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
Deep Learning: Dive into the World of Machine Learning!
Updated on 03 July, 2023
5.84K+ views
• 9 min read
Table of Contents
What comes to your mind when you hear the term “Deep Learning?” You probably think of smart robots and machines that will take over our world in the near future, right? Well, that’s not at all what deep learning is. In a layman’s term, deep learning is an AI approach that aims to imitate the workings of the human brain to process large amounts of data and extract meaningful patterns from it to foster data-driven decision making.
Today, data rules all – it is the new King of the digital world that we live in. Artificial Intelligence, Machine Learning, and Deep Learning are all focused on one thing – leveraging Big Data to power innovation. The interest in AI technology is soaring by the minute, and deep learning is the cutting-edge approach that is disrupting every industry. According to a recent research report by Tractica, the AI market is estimated to grow from 3.2 billion in 2016 to $89.8 billion by 2025. These figures only reinforce the fact that AI, ML, and Deep Learning will play an even bigger role in the development and transformation of the business and IT sector.
Get Machine Learning Certification from the World’s top Universities. Earn Masters, Executive PGP, or Advanced Certificate Programs to fast-track your career.
What is Deep Learning?
Deep learning is deeply intertwined with Artificial Intelligence and Machine Learning. How, you ask?
As you can see, deep learning is a subset of ML which in turn is a subset of AI. Thus, while Artificial Intelligence is the broader umbrella that focuses on teaching machines how to think independently and intelligently, ML is an AI approach that aims to create such algorithms that can extract valuable information from large datasets. Deep Learning, on the other hand, is a branch of ML that uses a specific algorithm – Neural Nets – to achieve the end purpose of ML.
What is Machine Learning and Why it matters
Deep learning is an exclusive technique for developing and training neural networks. The structure of a neural network draws inspiration from the structure of the human brain, more precisely, the cerebral cortex. Thus, similar to a cerebral cortex, an artificial neural network also has many layers of interconnected perceptrons. Unlike traditional data approaches that analyze data in the linear method, deep learning relies on the non-linear approach of training machines to process data. The data that is fed into the deep learning system passes through the interconnected network of hidden layers
These hidden layers of the neural net process, analyze, modify, and manipulate the data to determine its relationship with the target variable. Each node of the net bears a specific weight, and every time the data passes through a node, it multiplies the input value by its weight. This process continues until it reaches the output layer, with the final output transforming into a valuable information. Deep learning, thus, eliminates the process of manual identification of patterns hidden in data.
How does Deep Learning work?
Now that you have a deep learning introduction, let us understand its working. At its core, deep learning operates by using large amounts of labeled data and feeding it into neural networks. The neural networks then iteratively learn from this data by adjusting their internal parameters through a process known as backpropagation. This iterative learning process allows the networks to progressively improve their performance and accuracy over time.
Deep learning architectures are typically composed of an input layer, one or more hidden layers, and an output layer. Each layer consists of numerous artificial neurons that receive input, process it using weighted connections, and produce an output. The layers are densely connected, meaning that each neuron in one layer is connected to every neuron in the subsequent layer. This interconnectedness allows the network to capture complex relationships and dependencies within the data.
Career Opportunities in Deep Learning
Anyone in the IT world must have heard about deep learning at some point of his/her career. With AI progressing by leaps and bounds, the field of deep learning is also skyrocketing. Since deep learning is a rapidly growing field of research, it is creating massive job opportunities for individuals who specialize in AI and ML technologies. Today, the demand for skilled and trained professionals in deep learning, particularly for deep learning engineers and deep learning researchers, has increased by manifold across the various parallels of the industry.
According to a 2017 report by Grand View Research, Inc., the deep learning market in the US is projected to reach $10.2 billion by 2025.
Deep learning market revenues in the US (2014-25)
According to the latest stats on Indeed, the average salary for deep learning professionals in the US ranges anywhere between $71,935/year for a Deep Learning Research Scientist to $140,856/year for Deep Learning Computer Vision Engineer.
Skills Required for a Successful Deep Learning Career
Since deep learning is a subset of ML, the skills required for deep learning are pretty much the same as required for ML. By now you’ve already guessed that programming knowledge is a must here. Most popular deep learning libraries are written in R and Python. Hence, if you are well-versed in any one of these two languages, it will suffice. Apart from possessing extensive knowledge of the fundamentals of Computer Science and programming, you must also have a solid foundation in Mathematics, Statistics & Probability, and Data Modeling.
A significant part of a deep learning engineer’s job is to design algorithms and systems that can seamlessly communicate with as well as integrate other software components that already exist. Thus, software design skills are a must in this field. You also need to be comfortable in working with standard ML libraries and algorithms including MLib, TensorFlow, and CNTK.
In-demand Machine Learning Skills
Deep Learning in the Real World
Deep learning has penetrated almost all the significant aspects of our lives. Whether we realize it or not, deep learning technologies are everywhere around us. Organizations and companies across the world are leveraging deep learning technology to power innovations like self-driving cars and chatbots to developing useful services like fraud prevention, predictive analytics, task automation, and much more.
Deep Learning Applications
Deep learning has found applications in various domains, revolutionizing industries and enabling breakthrough advancements.
Now that you know what is deep learning in AI, explore some prominent applications of deep learning:
Computer Vision: Deep learning has significantly enhanced computer vision tasks, such as image classification, object detection, and facial recognition. By analyzing pixel-level data, deep learning models can accurately identify and classify objects within images and videos.
Natural Language Processing (NLP): Deep learning has greatly improved NLP tasks, including speech recognition, language translation, and sentiment analysis. Deep learning models can understand and generate human language, enabling advancements in virtual assistants, chatbots, and language-based applications.
Healthcare: Deep learning is making substantial contributions to the healthcare sector. It is being utilized for medical image analysis, disease diagnosis, drug discovery, and personalized treatment recommendations. Deep learning models can analyze medical images like X-rays, MRIs, and CT scans, assisting doctors in accurate diagnosis and treatment planning.
Autonomous Vehicles: Deep learning plays a vital role in enabling autonomous vehicles to perceive and understand their surroundings. Deep learning algorithms can process sensor data, such as images and LiDAR readings, to identify pedestrians, vehicles, and obstacles, allowing autonomous vehicles to navigate safely.
Importance of Deep Learning
The importance of deep learning lies in its ability to extract meaningful insights from complex and unstructured data. Traditional machine learning algorithms often struggle to handle high-dimensional data with intricate patterns. Deep learning, with its hierarchical representations and sophisticated neural networks, can capture and utilize these patterns effectively. This capability has opened up new possibilities in various fields, ranging from healthcare and finance to retail and entertainment.
Let us now look at some of the best use cases of deep learning in the real world!
- One of the most excellent examples of deep learning tech is the personalized recommendation lists on online platforms such as Netflix, Amazon, and Facebook. The online and social media giants have access to a treasure trove of user-generated data. Using deep learning techniques, they are able to extract useful information from the user-generated data which is then used to create a customized and personalized list of suggestions for individual users according to their tastes and preferences.
- Deep learning networks are capable of successfully analyzing behaviors in real-time. DeepGlint is a deep learning solution that can fetch real-time insights about the behavior of any object, be it humans or inanimate objects like cars.
- Image recognition is another application of deep learning. Image recognition aims to recognize and identify objects within images while also understanding the content and context of the image. AlchemyAPI has been developing image recognition technology for quite a while now. CamFind is a mobile app that utilizes AlchemyVision API – it can not only inform the users about the objects in an image but can also tell them where they can purchase those objects from.
- Deep learning applications have also found their way in the world of advertising. Ad networks and marketers leverage deep learning tech to build data-driven predictive advertising, targeted display advertising, and real-time bidding (RTB) advertising, to name a few. For instance, Baidu, a Chinese search engine uses deep learning to predict such advertising content and methods that the users can relate to. This helps increase the revenue of the company.
- Pattern recognition powered by deep learning is being used by many companies to detect and prevent fraud. PayPal has been successful in preventing fraudulent payment transactions and purchases. It has achieved this with the help of H2O (an open-source predictive analytics platform) that uses advanced ML algorithms to analyze data in real-time to check for any anomalies that hint at fraudulent activities and security threats.
Artificial Intelligence Engineers: Myths vs. Realities
These are only a few use cases of deep learning from a vast pool of other innovative real-world projects. Deep learning, like AI and ML, is still emerging and developing. In the future, deep learning together with AI and ML will pave the way for more such groundbreaking innovations that’ll completely transform our lives in ways we cannot yet imagine.
Popular AI and ML Blogs & Free Courses
Deep Learning Limitations
Despite its impressive capabilities, deep learning does have certain limitations. One of the major challenges is the requirement for large amounts of labeled data for training. Deep learning models thrive on data, and obtaining a significant volume of high-quality labeled data can be time-consuming and expensive. Additionally, deep learning models are often considered “black boxes,” as their decision-making processes are not easily interpretable, raising concerns regarding transparency and accountability.
Difference Between Artificial Intelligence vs Machine Learning vs Deep Learning
Before diving deeper into deep learning, it’s important to understand the distinction between artificial intelligence (AI), machine learning, and deep learning. While AI encompasses the broader field of creating intelligent systems, machine learning is a subset of AI that focuses on algorithms that learn from data. Deep learning, on the other hand, is a specific approach within machine learning that utilizes neural networks with multiple layers.
RELATED PROGRAMS