- Blog Categories
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Gini Index for Decision Trees
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Brand Manager Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Search Engine Optimization
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
Different Types of Regression Models You Need to Know
Updated on 30 November, 2022
5.68K+ views
• 8 min read
Table of Contents
Regression problems are commonplace in machine learning, and the most common technique to solve them is regression analysis. It is based on data modeling and involves working out the best fit line, which passes through all the data points so that the distance between the line and each data point is minimal. While many different regression analysis techniques exist, linear and logistic regression are the most prominent ones. The type of regression analysis model we use will eventually depend on the nature of the data involved.
Let’s find out more about regression analysis and the different types of regression analysis models.
What is Regression Analysis?
Regression analysis is a predictive modeling technique for determining the relationship between the dependent (target) variables and independent variables in a dataset. It is typically used when the target variable contains continuous values and the dependent and independent variables share a linear or non-linear relationship. Thus, regression analysis techniques find use in determining the causal effect relationship between variables, time series modeling, and forecasting. For example, the relationship between the sales and advertisement expenditure of a company can be best studied using regression analysis.
Types of Regression Analysis
There are many different types of regression analysis techniques we can use to make predictions. Furthermore, the use of each technique is driven by factors such as the number of independent variables, the shape of the regression line, and the type of dependent variable.
Let us understand some of the most commonly used regression analysis methods:
1. Linear Regression
Linear regression is the most widely known modeling technique and assumes a linear relationship between a dependent variable (Y) and an independent variable (X). It establishes this linear relationship using a regression line, also known as a best-fit line. The linear relationship is represented by the equation Y = c+m*X + e, where ‘c’ is the intercept, ‘m’ is the slope of the line, and ‘e’ is the error term.
The linear regression model can be simple (with one dependent and one independent variable) or multiple (with one dependent variable and more than one independent variable).
2. Logistic Regression
The logistic regression analysis technique finds use when the dependent variable is discrete. In other words, this technique is used to estimate the probability of mutually exclusive events such as pass/fail, true/false, 0/1, etc. Hence, the target variable can have only one of two values, and a sigmoid curve represents its relationship with the independent variable. The value of probability ranges between 0 and 1.
3. Polynomial Regression
The polynomial regression analysis technique models a non-linear relationship between the dependent and independent variables. It is a modified form of the multiple linear regression model, but the best fit line that passes through all the data points is curved and not straight.
4. Ridge Regression
The ridge regression analysis technique is used when the data shows multicollinearity; that is, the independent variables are highly correlated. Although the least square estimates in multicollinearity are unbiased, their variances are large enough to deviate the observed value from the true value. Ridge regression minimizes the standard errors by introducing a degree of bias in the regression estimates.
The lambda (λ) in the ridge regression equation solves the multicollinearity problem.
5. Lasso Regression
Like ridge regression, the lasso (Least Absolute Shrinkage and Selection Operator) regression technique penalizes the regression coefficient’s absolute size. In addition, the lasso regression technique uses variable selection, which results in coefficient values shrinking towards absolute zero.
6. Quantile Regression
The quantile regression analysis technique is an extension of linear regression analysis. It is used when the conditions for linear regression are not met, or the data has outliers. Quantile regression finds applications in statistics and econometrics.
7. Bayesian Linear Regression
The Bayesian linear regression is one of the types of regression analysis techniques in machine learning that utilizes Bayes’ theorem to determine the value of the regression coefficients. Instead of finding out the least-squares, this technique determines the posterior distribution of the features. As a result, the technique has more stability than simple linear regression.
8. Principal Components Regression
The principal components regression technique is typically used to analyze multiple regression data with multicollinearity. Like the ridge regression technique, the main components regression method minimizes the standard errors by imparting a degree of bias to the regression estimates. The technique has two steps – first, principal component analysis is applied to the training data, and then, the transformed samples are used to train a regressor.
9. Partial Least Squares Regression
The partial least squares regression technique is one of the quick and efficient types of regression analysis techniques based on covariance. It is beneficial for regression problems where the number of independent variables is high with likely multicollinearity among the variables. The technique reduces the variables to a smaller set of predictors, which are then used to carry out a regression.
10. Elastic Net Regression
The elastic net regression technique is a hybrid of the ridge and lasso regression models and is useful when dealing with highly correlated variables. It uses the penalties from ridge and lasso regression methods to regularize the regression models.
Summary
Apart from the regression analysis techniques we discussed here, several other types of regression models are used in machine learning, such as ecological regression, stepwise regression, jackknife regression, and robust regression. The specific use case of all these different types of regression techniques depends on the nature of the data available and the level of accuracy that can be achieved. Overall, regression analysis has two core benefits. These are as follows:
- It indicates the relationship between a dependent variable and an independent variable.
- It shows the strength of the impact of independent variables on a dependent variable.
Way Forward: Earn a Master of Science Degree in Machine Learning & AI
Are you looking for a comprehensive online program to gear up for a machine learning and artificial intelligence career?
upGrad offers a Master of Science Degree in Machine Learning & AI in association with Liverpool John Moores University and IIIT Bangalore to produce versatile AI professionals and Data Scientists.
The comprehensive, 20-months online program is specifically designed for working professionals who want to master advanced concepts and skills like Deep Learning, NLP, Graphical Models, Reinforcement Learning, and the like. Besides, the program intends to impart a solid foundation in statistics along with key programming languages and tools such as Python, Keras, TensorFlow, Kubernetes, MySQL, and more.
Program Highlights:
- Master’s Degree from Liverpool John Moores University
- Executive PGP from IIIT Bangalore
- 40+ live sessions, 12+ case studies and projects, 11 coding assignments, six capstone projects
- 25+ mentorship sessions with industry experts
- 360-degree career assistance and learning support
- Peer-to-peer networking opportunities
With a world-class faculty, pedagogy, technology, and industry experts, upGrad has emerged as South Asia’s largest higher EdTech platform and impacted 500,000+ working professionals worldwide. Sign up today to become a part of upGrad’s 40,000+ global learner base across 80+ countries!
Frequently Asked Questions (FAQs)
1. What is regression testing definition?
Regression testing is defined as a type of software testing done to verify if a code change in the software has had no impact on the functionality of the exiting product. It ensures that the product performs well with the new functionalities or any changes to its existing features. Regression testing involves a partial or complete selection of previously executed test cases that are re-executed to check the working conditions of the existing functionalities.
2. What is the purpose of a regression model?
Regression analysis is done for either of two purposes - to predict the value of the dependent variable where some information regarding the independent variables is available or to predict the effect of an independent variable on a dependent variable.
3. Regression analysis is done for either of two purposes - to predict the value of the dependent variable where some information regarding the independent variables is available or to predict the eff
An appropriate sample size is essential to ensure the accuracy and validity of the results. Although there is no rule of thumb to determine the proper sample size in regression analysis, some researchers consider at least ten observations per variable. Thus, if we use three independent variables, the minimum sample size would be 30. Many researchers also follow a statistical formula to determine the sample size.