- Blog Categories
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Gini Index for Decision Trees
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Brand Manager Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Search Engine Optimization
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
Everything You Should Know About Unsupervised Learning Algorithms
Updated on 20 November, 2024
5.4K+ views
• 7 min read
Table of Contents
Unsupervised Learning Algorithms
Machine learning has seen a lot of development in recent years, and unsupervised learning is a part of that. Machine learning is a broad subject, and that’s why it’s divided into three categories. Out of those three, we’ll be discussing unsupervised learning in this article. Unsupervised learning is one of the relatively new topics in the tech sector.
It has plenty of challenges but with a vast list of advantages as well. In this article, you’ll find out what unsupervised learning is, how does it work, what its problems are, its advantages, and what are the algorithms present in it. We’ve kept it as comprehensive as possible.
So, let’s get started.
What is Unsupervised Learning?
When you don’t give any labels to the learning algorithm and let it find structure in the input by itself, it’s called unsupervised learning. Unsupervised learning is one of three machine learning types; the other two are semi-supervised learning and supervised learning. Unsupervised learning can be a means towards an end or a goal in itself.
To understand unsupervised learning, imagine it as a test where the examiner doesn’t have an answer key to compare your answers with. What an exciting test would that be, right? Well, unsupervised learning enables you to work with the input and find the answers you were looking for. Maybe you wanted to find a pattern in the input you hadn’t noticed before. Or perhaps you want to understand how the data is distributed in a specific space.
Problems of Unsupervised Learning
Unsupervised learning might be quite popular, but that doesn’t mean it doesn’t have its problems. There are multiple challenges you can face due to these algorithms. Firstly, you can’t figure out whether you’re completing the task or not when you’re using unsupervised learning.
That’s because, in supervised learning, you have a standard to compare your output with. You define metrics that enable decision making on the basis of model tuning. Recall, precision, and other similar measures help you see how accurate your model is. And you can tweak the parameters of that model to enhance the accuracy of the same. If your accuracy weren’t high, you’d get a score accordingly, which would mean that you need to improve your model.
Unsupervised learning doesn’t have any labels. So, it is nearly impossible to get an objective measure of your model’s accuracy. How can you be sure that your k-means clustering algorithm found the right cluster? How would you determine the accuracy of its output? Supervised learning provides you with accuracy scores to help you determine whether your output is correct or not. But with unsupervised learning, you don’t have that luxury. Learn more about the types of supervised learning.
Now, whether unsupervised learning is useful for solving a problem or not depends on a lot of factors. Unsupervised learning wouldn’t be so prevalent if it didn’t have any applications. We’ve discussed its importance in the next section.
Why Unsupervised Learning is Necessary
After reading the challenges, this method poses, you might wonder if it’s even useful. Well, unsupervised learning has many benefits, and some of the reasons why it’s so prevalent are below:
- It enables machines to solve problems that human minds can’t due to bias or capacity.
- Unsupervised learning is suitable for exploring unknown data. If you don’t know what you need to find, then this is the perfect method for you.
- It’s quite costly to annotate large datasets. As a result, experts rely on a few examples to work on the problem.
- If you don’t know how many classes the data has, you’d need to use unsupervised learning algorithms. A great example of this is data mining.
A great unsupervised learning example is recommendation systems. Recommendation systems work through collecting the historical data of a person and suggesting their recommendations accordingly. These recommendation systems use unsupervised learning to make such suggestions. Examples of these systems include Netflix and YouTube.
So, you can see that unsupervised learning is quite effective for solving a specific kind of problem. Now that you recognize its importance, we can move onto more detailed sections and take a look at its categories.
Get Machine Learning Certification from the World’s top Universities. Earn Masters, Executive PGP, or Advanced Certificate Programs to fast-track your career.
Categories of Unsupervised Learning
We can classify unsupervised learning in two categories:
Parametric
When you assume a parametric distribution of data, you will use these unsupervised learning algorithms. In this case, you think that the mean and standard deviation parameterize all the members of a typical family of distributions. You also assume that the data originates from a population following a probability distribution that’s based on a specific set of parameters.
This means you can know the probability of future observations by merely knowing the mean and standard deviation. You will use the expectation-maximization algorithm and construction of Gaussian Mixture Models to predict the class of the sample you have. As you have answer labels to work with, it is a little trickier and more challenging to solve such problems. You wouldn’t have any corrective measures to compare your results with.
Non-parametric
In this category, you group the data in clusters. Each cluster of the data points out something about the classes and types of the same. It’s a standard method to model and analyze data when you have small samples. With non-parametric models, you don’t have to make any assumptions about the population distribution of the data. That’s why another popular name for non-parametric unsupervised learning is distribution-free unsupervised learning.
Essential Concepts in Unsupervised Learning Algorithms
Data Compression
Due to high storage costs and the limitations of our computing power, we’re continually looking for ways to enhance the efficiency of our data operations. And a great solution in this regard is dimensionality reduction. Dimensionality reduction is a process present in unsupervised learning, and it works based on various concepts similar to Information Theory.
Dimensionality reduction assumes that most of the data is redundant and that you can represent almost all of the information in a data set by using just a fraction of the data you have.
Two of the most popular algorithms experts use for this purpose are Singular-Value Decomposition and Principal Component Analysis. The former factorizes your data in the product three other while the latter finds the linear combinations that convey most of the variance or difference present in your data. There are plenty of different algorithms present in unsupervised learning which perform a variety of tasks.
Also read: Machine Learning Project Ideas for Beginners
By reducing the dimensionality of your data, you can enhance the machine learning pipeline. If you can reduce the data by order of magnitude, you’ll be able to reduce the required computing power and storage space substantially. This will help you in reducing the operating costs as well. A great unsupervised learning example, in this case, is computer vision. SVD and PCA are quite useful in data compression of images. And experts use one of them in the preprocessing stage of machine learning pipelines.
Clustering
In clustering, you organize the data points in groups in such a way that the members of a group are similar in some fashion. It’s probably the most crucial problem present in unsupervised learning. In clustering, you create groups of data points that are similar and separate them from data points that are dissimilar to them.
Clustering focuses on determining the internal grouping of the input. As it’s a concept of unsupervised learning, it works with unlabeled data. It forms groups of data points according to the similarity it notices in their features. However, whether a cluster is correct or not depends on the user.
Clustering algorithms are of four kinds, and they are as follows:
- Probabilistic clustering algorithms
- Hierarchical clustering algorithms
- Overlapping clustering algorithms
- Exclusive clustering algorithms
The name of the first kind is self-explanatory. The second one focuses on the union of two nearest clusters, while the overlapping algorithms use fuzzy sets so that a point might belong to multiple clusters. The last one group’s data in such a way that a data point of one cluster couldn’t belong to other groups.
Generative Models
In generative models, you get the training data to generate new samples from it. Such models have the task of creating data similar to the one you give to them. And they do so through learning the essence of their data efficiently. Generative models can learn the features of the data you provide to them, and that’s a significant long-term advantage. Image datasets are a great example of generative models. With the help of an image dataset, you can produce many similar images.
What Next ?
Unsupervised learning is a broad concept of machine learning. There are many algorithms present in this category, and you must’ve noticed how much variety is present among them. If you want to learn more about this topic, you should head to our blog. You’ll find plenty of useful articles on unsupervised learning and machine learning.
If you’re interested to learn more about machine learning, check out IIIT-B & upGrad’s PG Diploma in Machine Learning & AI which is designed for working professionals and offers 450+ hours of rigorous training, 30+ case studies & assignments, IIIT-B Alumni status, 5+ practical hands-on capstone projects & job assistance with top firms.
Best Machine Learning and AI Courses Online
In-demand Machine Learning Skills
Popular AI and ML Blogs & Free Courses
RELATED PROGRAMS