- Blog Categories
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Gini Index for Decision Trees
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Brand Manager Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Search Engine Optimization
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
Face Detection Project in Python [In 5 Easy Steps]
Updated on 14 February, 2024
25.13K+ views
• 8 min read
Object identification and face detection are probably the most popular applications of computer vision. This technology finds applications in various industries, such as security and social media. So we’re building a face detection project through Python.
Note that you should be familiar with programming in Python, OpenCV, and NumPy. It will ensure that you don’t get confused while working on this project. Let’s get started.
We’ve shared two methods to perform face recognition. The first uses Python’s face recognition library, while the other one uses OpenCV and NumPy. Check out our data science programs to learn more.
Learn Machine Learning Courses from the World’s top Universities. Earn Masters, Executive PGP, or Advanced Certificate Programs to fast-track your career.
Face Recognition with Python’s ‘Face Recognition’
Probably the easiest method to detect faces is to use the face recognition library in Python. It had 99.38% accuracy in the LFW database. Using it is quite simple and doesn’t require much effort. Moreover, the library has a dedicated ‘face_recognition’ command for identifying faces in images.
How to Use Face Recognition
You can distinguish faces in images by using the ‘face_locations’ command:
import face_recognition
image = face_recognition.load_image_file(“your_file.jpg”)
face_locations = face_recognition.face_locations(image)
It can also recognize faces and associate them with their names:
import face_recognition
known_image = face_recognition.load_image_file(“modi.jpg”)
unknown_image = face_recognition.load_image_file(“unknown.jpg”)
modi_encoding = face_recognition.face_encodings(known_image)[0]
unknown_encoding = face_recognition.face_encodings(unknown_image)[0]
results = face_recognition.compare_faces([modi_encoding], unknown_encoding)
Picture Contains “Narendra Modi”
There are many other things you can perform with this library by combining it with others. We’ll now discuss performing face recognition with other prominent libraries in Python, particularly OpenCV and NumPy.
Read more: Python NumPy Tutorial: Learn Python Numpy With Examples
Face Detection Project in Python
In this project, we’ve performed face detection and recognition by using OpenCV and NumPy. We’ve used Raspberry Pi, but you can also use it with other systems. You’ll only have to modify the code slightly to use it on some other device (such as a Mac or a Windows PC).
Some credit for this project goes to Marcelo Rovai.
Step #1: Install Libraries
First, you should install the required libraries, OpenCV, and NumPy. You can install it easily through:
pip install opencv-python
pip install opencv-contrib-python
For installing NumPy in your system, use the same command as above and replace ‘opencv-python’ with ‘numpy’:
pip install numpy
Step #2: Detect Faces
Now, you must configure your camera and connect it to your system. The camera should work properly to avoid any issues in face detection.
Before our camera recognizes us, it first has to detect faces. We’ll use the Haar Cascade classifier for face detection. It is primarily an object detection method where you train a cascade function through negative and positive images, after which it becomes able to detect objects in other photos.
In our case, we want our model to detect faces. OpenCV comes with a trainer and a detector, so using the Haar Cascade classifier is relatively more comfortable with this library. You can create your classifier to detect other images as well.
Here’s the code:
import numpy as np
import cv2
faceCascade = cv2.CascadeClassifier(‘Cascades/haarcascade_frontalface_default.xml’)
cap = cv2.VideoCapture(0)
cap.set(3,640) # set Width
cap.set(4,480) # set Height
while True:
ret, img = cap.read()
img = cv2.flip(img, -1)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = faceCascade.detectMultiScale(
gray,
scaleFactor=1.2,
minNeighbors=5,
minSize=(20, 20)
)
for (x,y,w,h) in faces:
cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)
roi_gray = gray[y:y+h, x:x+w]
roi_color = img[y:y+h, x:x+w]
cv2.imshow(‘video’,img)
k = cv2.waitKey(30) & 0xff
if k == 27: # press ‘ESC’ to quit
break
cap.release()
cv2.destroyAllWindows()
FYI: Free nlp course!
Also, Check out all Trending Python Tutorial Concepts in 2024.
Step #3: Gather Data
Now that your model can identify faces, you can train it so it would start recognizing whose face is in the picture. To do that, you must provide it with multiple photos of the faces you want it to remember.
That’s why we’ll start with creating our dataset by gathering photos. After collecting the necessary images, add IDs for every person, so the model knows what face to associate with what ID. Start with the images of one person and add at least 10-20. Use different expressions to get the most effective results.
Create a script for adding user IDs to images, so you don’t have to do it manually every time. The script is vital in case you want to use your model for multiple faces.
In-demand Machine Learning Skills
Step #4: Train
After creating the dataset of the person’s images, you’d have to train the model. You’d feed the pictures to your OpenCV recognizer, and it will create a file named ‘trainer.yml’ in the end.
In this stage, you only have to provide the model with images and their IDs so the model can get familiar with the ID of every image. After we finish training the model, we can test it.
Here’s the code:
import cv2
import numpy as np
from PIL import Image
import os
# Path for face image database
path = ‘dataset’
recognizer = cv2.face.LBPHFaceRecognizer_create()
detector = cv2.CascadeClassifier(“haarcascade_frontalface_default.xml”);
# function to get the images and label data
def getImagesAndLabels(path):
imagePaths = [os.path.join(path,f) for f in os.listdir(path)]
faceSamples=[]
ids = []
for imagePath in imagePaths:
PIL_img = Image.open(imagePath).convert(‘L’) # grayscale
img_numpy = np.array(PIL_img,’uint8′)
id = int(os.path.split(imagePath)[-1].split(“.”)[1])
faces = detector.detectMultiScale(img_numpy)
for (x,y,w,h) in faces:
faceSamples.append(img_numpy[y:y+h,x:x+w])
ids.append(id)
return faceSamples,ids
print (“\n [INFO] Training faces. It will take a few seconds. Wait …”)
faces,ids = getImagesAndLabels(path)
recognizer.train(faces, np.array(ids))
# Save the model into trainer/trainer.yml
recognizer.write(‘trainer/trainer.yml’)
# Print the number of faces trained and end program
print(“\n [INFO] {0} faces trained. Exiting Program”.format(len(np.unique(ids))))
Learn: MATLAB Application in Face Recognition: Code, Description & Syntax
Step#5: Start Recognition
Now that you have trained the model, we can start testing the model. In this section, we have added names to the IDs so the model can display the names of the respective users it recognizes.
The model doesn’t recognize a person. It predicts whether the face it detects matches to the face present in its database. Our model displays a percentage of how much the face matches the face present in its database. Its accuracy will depend heavily on the image you’re testing and the pictures you’ve added to your database (the images you trained the model with).
Here’s the code:
import cv2
import numpy as np
import os
recognizer = cv2.face.LBPHFaceRecognizer_create()
recognizer.read(‘trainer/trainer.yml’)
cascadePath = “haarcascade_frontalface_default.xml”
faceCascade = cv2.CascadeClassifier(cascadePath);
font = cv2.FONT_HERSHEY_SIMPLEX
#initiate id counter
id = 0
# names related to ids: example ==> upGrad: id=1, etc
names = [‘None’, upGrad’, Me’, ‘Friend’, ‘Y’, ‘X’]
# Initialize and start realtime video capture
cam = cv2.VideoCapture(0)
cam.set(3, 640) # set video width
cam.set(4, 480) # set video height
# Define min window size to be recognized as a face
minW = 0.1*cam.get(3)
minH = 0.1*cam.get(4)
while True:
ret, img =cam.read()
img = cv2.flip(img, -1) # Flip vertically
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
faces = faceCascade.detectMultiScale(
gray,
scaleFactor = 1.2,
minNeighbors = 5,
minSize = (int(minW), int(minH)),
)
for(x,y,w,h) in faces:
cv2.rectangle(img, (x,y), (x+w,y+h), (0,255,0), 2)
id, confidence = recognizer.predict(gray[y:y+h,x:x+w])
# If confidence is less than 100 ==> “0” : perfect match
if (confidence < 100):
id = names[id]
confidence = ” {0}%”.format(round(100 – confidence))
else:
id = “unknown”
confidence = ” {0}%”.format(round(100 – confidence))
cv2.putText(
img,
str(id),
(x+5,y-5),
font,
1,
(255,255,255),
2
)
cv2.putText(
img,
str(confidence),
(x+5,y+h-5),
font,
1,
(255,255,0),
1
)
cv2.imshow(‘camera’,img)
k = cv2.waitKey(10) & 0xff # Press ‘ESC’ for exiting video
if k == 27:
break
# Do a cleanup
print(“\n [INFO] Exiting Program and doing cleanup”)
cam.release()
cv2.destroyAllWindows()
We have reached the end of our face detection project in Python. You now know how to create a machine learning model that detects and recognizes faces. Make sure to share your results with us!
Popular AI and ML Blogs & Free Courses
Learn More About Machine Learning
We hope you liked this face detection project. If you want to make it more challenging, you can add multiple faces in your dataset and train your model accordingly. You can also combine it with other libraries and extend the project into something else, such as a face detection security system for a program!
If you’re interested to learn more about machine learning, check out IIIT-B & upGrad’s Executive PG Programme in Machine Learning & AI which is designed for working professionals and offers 450+ hours of rigorous training, 30+ case studies & assignments, IIIT-B Alumni status, 5+ practical hands-on capstone projects & job assistance with top firms.
Frequently Asked Questions (FAQs)
1. Which mathematical approach is used for face recognition?
Face recognition is computationally expensive and it is often used as accuracy test of machine learning algorithms and object detection methods. Generally, in most of the cases, the classical mathematical approach is followed - Euclidean distance. A geometric transformation is applied in order to find the closest Euclidean distance between the two sets. Euclidean distance requires adding up of a square of the difference between the two vectors of the points that represent the two images. More details about the Euclidean distance algorithm can be found from this research paper.
2. How does face detection work?
Face detection is the process of detecting a human face or multiple human faces in a digital image or video. Face detection is a sub-process of facial recognition, but the term typically refers to image-based face recognition where only the locations of faces in an image are used to identify or verify a person, while facial recognition also creates a model of their unique face, which is then matched to a target face. Face detection is different than face recognition in that face recognition is the automated process of identifying or verifying a person from a digital image or a video source.
3. What are the challenges of facial recognition?
Some challenges of facial recognition are discussed here. The algorithms involved in facial recognition systems are quite complex, which makes them highly inconsistent. The facial recognition systems are easily fooled by environmental and lighting changes, different poses, and even similar-looking people. Facial recognition systems require very high computational power, which is why facial recognition systems are mostly used with high-end smartphones and laptops. A facial recognition system might detect several false matches in a single frame. The software has to determine what the user intended to do, which is not an easy task for the software.
RELATED PROGRAMS