- Blog Categories
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Gini Index for Decision Trees
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Brand Manager Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Search Engine Optimization
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
What is Geometric Deep Learning All About?
Updated on 03 July, 2023
5.7K+ views
• 8 min read
Table of Contents
The deep learning algorithms like Recurrent Neural Networks (RNN) and Convolutional Neural Networks (CNN) have done significant work in solving problems of various fields like speech recognition, computer vision, and a lot more in the last few years. Although the results had great accuracy, it mostly worked on euclidean data.
But when it comes to Network Science, Physics, Biology, Computer Graphics, and Recommender Systems, we have to deal with non-euclidean data, i.e. manifolds and graphs. Geometric Deep Learning deals with this non-euclidean data with a sense of deep learning techniques as a whole to the manifold or graph-structured data.
What is Geometric Deep Learning?
In the past few years, we have seen significant advancement in the field of deep learning and machine learning. The computer power is growing rapidly, and the available data is combined with the algorithms which were developed back in 1980 – 1990 for their new applications.
If there’s an area which benefited a lot from this development would be Representation Learning. Representation learning is a part of supervised learning, and it is also called Feature Learning. Feature learning directly replaces Feature Engineering in a lot of applications. For your information, feature engineering is a field which deals with developing descriptors and features for performing on other Machine Learning Tasks.
Trending Machine Learning Skills
Enrol for the Machine Learning Course from the World’s top Universities. Earn Masters, Executive PGP, or Advanced Certificate Programs to fast-track your career.
One of the best examples is the use of Convolutional Neural Networks (CNN) for object detection, image classification, and achieving great accuracy hence setting a benchmark for the other conventional algorithms. ImageNet conducted a competition in 2012 and outperformed a SOTA substantially based on Feature Engineering.
Let us now get into understanding the field having a similar origin and a blossoming future, geometric deep learning.
The term geometric deep learning was first termed by Bronstein et al. in their article published in 2017, the title of the article was, “Geometric Deep Learning: going beyond euclidean data”.
It is a strong title which tells that geometric deep learning is capable of employing deep learning even on non-euclidean data. Non-euclidean data is a set of data which cannot fit in a two-dimensional space.
Usually, a graphic specialization or a mesh which is very extensive in the computer graphics field to visualize the non-euclidean data.
The figure on the left indicates the geodesic distance and on the right is the euclidean distance. The mesh in the above figure is a person’s face. Now, across the mesh, the shortest surface distance is the geodesic distance between two landmarks. While the distance calculated between two landmarks using a straight line is the euclidean distance.
Geodesic distance is the main advantage of representing any mesh in a non-euclidean form as it is more consequential for the tasks performed on it. It is not that we cannot cast the non-euclidean data into euclidean data inherently, but what happens is, there is a high cost in losing the performance and efficiency.
A prime and important example of non-euclidean data would be a graph. A graph is such a data structure which consists of entities or nodes which are connected to the relationships or edges. A graph can be used to model almost every and anything.
Well, you do not need an understanding of Graph Theory, you just need to read a bit on it so that you can use the software libraries which are required in the process. You should have a crystal clear basic knowledge of geometric deep learning for an outstanding introduction to graph and its fundamental theory.
For the data to be used to solve the problem based on geometric deep learning, if you already recognize the achievable instances based on the data you need to dispose of, or contrariwise; then it is a best-case scenario.
Top Machine Learning and AI Courses Online
Read: Convulational neural network
Statistical Reasoning
What we want to understand is what differs the inductive reasoning and deductive reasoning. When it comes to deductive reasoning, the general terms are used to come to a specific conclusion or to make a particular claim. Let us combine both of these assertions to form an example.
“All the girls scored 10/10 in the test” and “Taylor is a girl” eventually means that “Taylor has scored 10/10 in the test”. Inductive reasoning is vice versa; here, a general idea or conclusion is drawn from particular terms. Let us take an example to visualize the reasoning. Answer this question:
Which cow yields only long-life (UHT) milk? If you say “none”, you are among the 21% of the interviewed youth. 5% of the interviewed youth marked “Milka-cows”, 10% marked “all”, 2% of them lined up for “female cows” and “black & white cows”, and 50% of them had no answer.
Also Read: Recurrent Neural Network
There’s a lot to be analyzed from this result but let’s consider the Milka-cows thought. Let us understand the conclusion in inductive reasoning form with the youth’s point of view. Firstly, “Milka-cow is a special breed”, “UHT milk is special”, which eventually leads to “UHT milk is yielded by a Milka-cow”.
What can we sum up from this? Inductive bias or Inductive reasoning is a set of assumptions of the learner, which is sufficient to explain its inductive and deductive interference. One has to be very careful while designing the algorithms of inductive bias. One can use inductive interference to achieve the results which are equivalent to deductive inferences.
Interesting fact: From the math corpus in greater computer science, if there’s any subject which is fabled for being thought about as a tough subject is Graph Theory in discrete math.
However, graph theory allows us to perform a few exciting tasks and provide amazing insights with deep learning.
Graph Segmentation
Graph segmentation is a process of classifying one and all the components of a graph like nodes (entities), edges (relationships). Think of autonomous cars which need to get their environment monitored after a regular interval and predict what they would be next up to by the pedestrians.
Usually, human pedestrians are either represented as huge bounding boxes in three dimensions or as more degrees of motion skeletons. With faster and better three-dimensional semantic segmentation, autonomous car’s would have more and more algorithms which makes the perception feasible.
Popular AI and ML Blogs & Free Courses
Graph Classification
In graph classification, the algorithm gets a graph or subgraph as input and interprets one output of n classes which are specified having a certainty value combined with the prediction. It is equivalent to image classification of which the employed network has two main parts.
The first important part is feature extractor which creates an optical representation of the input data. Then to constrain the output regression to a particular dimensionality, fully connected layers are used. On the other hand, a softmax layer is required for multi-class classification.
Must Read: Step-by-Step Methods To Build Your Own AI System Today
Challenges and Limitations in Geometric Deep Learning
Geometric Deep Learning has evolved as an effective paradigm for analyzing and processing data through graphs or manifolds. However, it, like any other field, has its own set of difficulties and restrictions. In this part, we will look at some of the most common challenges that academics and practitioners experience while working with Geometric Deep Learning.
The absence of standardized datasets and standards is a significant difficulty in Geometric Deep Learning. Unlike classic deep learning tasks such as image classification or natural language processing, there is no generally recognized benchmark dataset for assessing graph-based models. This makes comparing the performance of different algorithms and measuring development in the sector challenging.
Another challenge is the scalability of graph neural networks (GNNs) to large-scale graphs. GNNs typically operate on local neighborhoods of nodes, which limits their applicability to graphs with millions or billions of nodes. Developing scalable architectures and algorithms that can efficiently handle such large-scale graphs remains an active area of research.
Furthermore, interpretability and explainability are required in Geometric Machine Learning. Deep learning models are sometimes viewed as black boxes, making understanding the underlying rationale behind their predictions difficult. This is especially important in fields where decisions such as healthcare or finance must be clear and accountable. Creating interpretable GNN models and strategies to explain their conclusions is critical for the widespread adoption of Geometric Deep Learning in various applications.
Another area for improvement lies in the availability of labeled data for training Geometric Deep Learning models. While labeled data is crucial for supervised learning, obtaining ground truth labels for graph-structured data can be expensive and time-consuming. Semi-supervised and unsupervised learning methods have been proposed to mitigate this issue, but further advancements are needed to leverage the potential of Geometric Deep Learning in scenarios with limited labeled data.
Future Trends and Opportunities in Geometric Deep Learning
Geometric Deep Learning is a rapidly evolving field that holds great promise for various applications. As researchers delve deeper into the domain, several future trends and opportunities are starting to emerge.
One exciting avenue is the combination of Geometric Deep Learning with other domains, such as computer vision and natural language processing. By incorporating graph structures into these fields, it is possible to develop more powerful models capable of capturing intricate relationships and semantics in data. This cross-pollination of ideas can lead to breakthroughs in tasks like image segmentation, scene understanding, and text analysis.
Another area of interest is the integration of Geometric ML with reinforcement learning. Reinforcement learning algorithms can benefit from graph representations to model complex interactions and dependencies between states. This synergy opens up possibilities for tackling challenging problems like robotic control and autonomous systems.
Moreover, research efforts are underway to enhance the interpretability and fairness of Geometric Deep Learning TensorFlow. By shedding light on the decision-making process of these models and addressing potential biases, we can ensure that they are trustworthy and equitable.
Developing benchmark datasets and evaluation metrics specific to Geometric Deep Learning is crucial. This will enable standardized evaluation and facilitate meaningful comparisons between different algorithms and approaches.
The bottom line
We have understood Geometric Deep Learning in depth by putting it in the Deep Learning context overall. We can conclude that geometric deep learning deals with irregular data as a whole, and we learnt about graphs by illustrating how promising their role in learning biases is.
If you’re interested to learn more about deep learning techniques, machine learning, check out IIIT-B & upGrad’s PG Diploma in Machine Learning & AI which is designed for working professionals and offers 450+ hours of rigorous training, 30+ case studies & assignments, IIIT-B Alumni status, 5+ practical hands-on capstone projects & job assistance with top firms.
RELATED PROGRAMS