- Blog Categories
- Software Development
- Data Science
- AI/ML
- Marketing
- General
- MBA
- Management
- Legal
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- Software Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Explore Skills
- Management Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
Gradient Descent in Logistic Regression [Explained for Beginners]
Updated on 22 September, 2022
15.52K+ views
• 8 min read
Table of Contents
In this article, we will be discussing the very popular Gradient Descent Algorithm in Logistic Regression. We will look into what is Logistic Regression, then gradually move our way to the Equation for Logistic Regression, its Cost Function, and finally Gradient Descent Algorithm.
Top Machine Learning and AI Courses Online
What is Logistic Regression?
Logistic Regression is simply a classification algorithm used to predict discrete categories, such as predicting if a mail is ‘spam’ or ‘not spam’; predicting if a given digit is a ‘9’ or ‘not 9’ etc. Now, by looking at the name, you must think, why is it named Regression?
The reason is, the idea of Logistic Regression was developed by tweaking a few elements of the basic Linear Regression Algorithm used in regression problems.
Logistic Regression can also be applied to Multi-Class (more than two classes) classification problems. Although, it is recommended to use this algorithm only for Binary Classification Problems.
Trending Machine Learning Skills
Enrol for the Machine Learning Course from the World’s top Universities. Earn Masters, Executive PGP, or Advanced Certificate Programs to fast-track your career.
Sigmoid Function
Classification problems are not Linear Function problems. The output is limited to certain discrete values, e.g., 0 and 1 for a binary classification problem. It does not make sense for a linear function to predict our output values as greater than 1, or lesser than 0. So we need a proper function to represent our output values.
Sigmoid Function solves our problem. Also known as the Logistic Function, it is an S-shaped function mapping any real value number to (0,1) interval, making it very useful in transforming any random function into a classification-based function. A Sigmoid Function looks like this:
Sigmoid Function
Now the mathematical form of the sigmoid function for parameterized vector and input vector X is:
(z) = 11+exp(-z) where z = TX
(z) will give us the probability that the output is 1. As we all know, the probability value ranges from 0 to 1. Now, this is not the output we want for our discrete-based(0 and 1 only) classification problem. So now we can compare the predicted probability with 0.5. If probability > 0.5, we have y=1. Similarly, if the probability is < 0.5, we have y=0.
Cost Function
Now that we have our discrete predictions, it is time to check whether our predictions are indeed correct or not. To do that, we have a Cost Function. Cost Function is merely the summation of all the errors made in the predictions across the entire dataset. Of course, we cannot use the Cost Function used in Linear Regression. So the new Cost Function for Logistic Regression is:
Don’t be afraid of the equation. It is very simple. For each iteration i, it is calculating the error we have made in our prediction, and then adding up all the errors to define our Cost Function J().
The two terms inside the bracket are actually for the two cases: y=0 and y=1. When y=0, the first term vanishes, and we are left with only the second term. Similarly, when y=1, the second term vanishes, and we are left with only the first term.
Gradient Descent Algorithm
We have successfully calculated our Cost Function. But we need to minimize the loss to make a good predicting algorithm. To do that, we have the Gradient Descent Algorithm.
Here we have plotted a graph between J()and . Our objective is to find the deepest point (global minimum) of this function. Now the deepest point is where the J()is minimum.
Two things are required to find the deepest point:
- Derivative – to find the direction of the next step.
- (Learning Rate) – magnitude of the next step
The idea is you first select any random point from the function. Then you need to compute the derivative of J()w.r.t. . This will point to the direction of the local minimum. Now multiply that resultant gradient with the Learning Rate. The Learning Rate has no fixed value, and is to be decided based on problems.
Now, you need to subtract the result from to get the new .
This update of should be simultaneously done for every (i).
Do these steps repeatedly until you reach the local or global minimum. By reaching the global minimum, you have achieved the lowest possible loss in your prediction.
Taking derivatives is simple. Just the basic calculus you must have done in your high school is enough. The major issue is with the Learning Rate( ). Taking a good learning rate is important and often difficult.
If you take a very small learning rate, each step will be too small, and hence you will take up a lot of time to reach the local minimum.
Now, if you tend to take a huge learning rate value, you will overshoot the minimum and never converge again. There is no specific rule for the perfect learning rate.
You need to tweak it to prepare the best model.
The equation for Gradient Descent is:
Repeat until convergence:
So we can summarize the Gradient Descent Algorithm as:
- Start with random
- Loop until convergence:
- Compute Gradient
- Update
- Return
Stochastic Gradient Descent Algorithm
Now, Gradient Descent Algorithm is a fine algorithm for minimizing Cost Function, especially for small to medium data. But when we need to deal with bigger datasets, Gradient Descent Algorithm turns out to be slow in computation. The reason is simple: it needs to compute the gradient, and update values simultaneously for every parameter,and that too for every training example.
So think about all those calculations! It’s massive, and hence there was a need for a slightly modified Gradient Descent Algorithm, namely – Stochastic Gradient Descent Algorithm (SGD).
The only difference SGD has with Normal Gradient Descent is that, in SGD, we don’t deal with the entire training instance at a single time. In SGD, we compute the gradient of the cost function for just a single random example at each iteration.
Now, doing so brings down the time taken for computations by a huge margin especially for large datasets. The path taken by SGD is very haphazard and noisy (although a noisy path may give us a chance to reach global minima).
But that is okay, since we do not have to worry about the path taken.
We only need to reach minimal loss at a faster time.
So we can summarize the Gradient Descent Algorithm as:
- Loop until convergence:
- Pick single data point ‘i’
- Compute Gradient over that single point
- Update
- Return
Mini-Batch Gradient Descent Algorithm
Mini-Batch Gradient Descent is another slight modification of the Gradient Descent Algorithm. It is somewhat in between Normal Gradient Descent and Stochastic Gradient Descent.
Mini-Batch Gradient Descent is just taking a smaller batch of the entire dataset, and then minimizing the loss on it.
This process is more efficient than both the above two Gradient Descent Algorithms. Now the batch size can be of-course anything you want.
But researchers have shown that it is better if you keep it within 1 to 100, with 32 being the best batch size.
Hence batch size = 32 is kept default in most frameworks.
- Loop until convergence:
- Pick a batch of ‘b’ data points
- Compute Gradient over that batch
- Update
- Return
Popular AI and ML Blogs & Free Courses
Conclusion
Now you have the theoretical understanding of Logistic Regression. You have learnt how to represent logistic function mathematically. You know how to measure the predicted error using the Cost Function.
You also know how you can minimize this loss using the Gradient Descent Algorithm.
Finally, you know which variation of the Gradient Descent Algorithm you should choose for your problem. upGrad provides a PG Diploma in Machine Learning and AI and a Master of Science in Machine Learning & AI that may guide you toward building a career. These courses will explain the need for Machine Learning and further steps to gather knowledge in this domain covering varied concepts ranging from gradient descent algorithms to Neural Networks.
Frequently Asked Questions (FAQs)
1. What is a gradient descent algorithm?
Gradient descent is an optimization algorithm for finding the minimum of a function. Suppose you want to find the minimum of a function f(x) between two points (a, b) and (c, d) on the graph of y = f(x). Then gradient descent involves three steps: (1) pick a point in the middle between two endpoints, (2) compute the gradient ∇f(x) (3) move in direction opposite to the gradient, i.e. from (c, d) to (a, b). The way to think about this is that the algorithm finds out the slope of the function at a point and then moves in the direction opposite to the slope.
2. What is sigmoid function?
The sigmoid function, or sigmoid curve, is a type of mathematical function that is non-linear and very similar in shape to the letter S (hence the name). It is used in operations research, statistics and other disciplines to model certain forms of real-valued growth. It is also used in a wide range of applications in computer science and engineering, especially in areas related to neural networks and artificial intelligence. Sigmoid functions are used as part of the inputs to reinforcement learning algorithms, which are based on artificial neural networks.
3. What is Stochastic Gradient Descent Algorithm?
Stochastic Gradient Descent is one of the popular variations of the classic Gradient Descent algorithm to find the local minima of the function. The algorithm randomly picks the direction in which the function will go next to minimize the value and the direction is repeated until a local-minima is reached. The objective is that by continuously repeating this process, the algorithm will converge to the global or local minimum of the function.
RELATED PROGRAMS