- Blog Categories
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Gini Index for Decision Trees
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Brand Manager Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Search Engine Optimization
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
Top Guesstimate Questions & Informative Methods for Data Science [2024]
Updated on 23 November, 2022
13.31K+ views
• 7 min read
What is Guesstimate?
Guesstimate is a methodological method of theory and evaluation; it helps you work efficiently with a higher degree of accuracy. It is the study of the data to consolidate the result. It is also an essential part of the Business Analyst or Data Science and Data Architects or Data Techies.
- Meaning: It’s about understanding the problem which you want to solve, and what is the purpose of that, why you want to solve it.
- Definition: It’s about the particular object and input and output of the flow of a process. To put it in a word, explanation.
- Guessing: It’s about the thought and conclusion- you are creating a particular object in your problem.
- Estimate: It’s about the estimate of the numbers on a given problem.
- Come up with an idea: Implement the idea with research and development.
When a guesstimate question can ask for the size of a market, it’s then called a “market-sizing” question.
Check out our best business analytics free courses with certifications
Here are the basic questions about guesstimate:
- How many people wear blue in New York on a typical Monday?
- How many tennis balls can you fit into an aeroplane?
How to Approach Guesstimate?
The process of solving a guesstimate problem is pretty manageable:
- Look at the feasible parameters that may affect the final quantity and estimate its numbers.
- Take a step back and think.
- Clarify your thoughts.
- Voice your thoughts.
- Simple Math approach-
This approach is typically used when the number to guesstimate is a ratio of some sorts. The task is to obtain the numerator and denominator then we are done!
1. Per capita approach-
This approach is used when the number to guess can be thought of as a consumption item at a person, household, or population level within geography.
2. Supply & Demand approach-
This approach needs thinking of the guesstimate number from either the supply or the demand (or both) side of the item.
Generally speaking, you can propose guesstimates in one of these two ways:
- Top-down method
- Bottom-up method
In the top-down, you start with the largest possible universe, of which your guesstimate is a portion of.
With the broadest base at the top. To this universe, you then keep applying a set of conditions or filters (however you want to put it) that reduce the number from the universe to a number that is appropriate for your guesstimate.
The key to the top-down estimation process lies in:
- It is accurately identifying the starting universe.
- It is accurately identifying as many of the relevant conditions/filters and segments that apply to your guesstimate problem.
- Segments: Frequently, you will have first to segment the universe into buckets and apply different filters to each segment.
Tips for guesstimate questions for Data Science:
- Practice Presenting: We have to do the practice of presenting with the audience of the particular solution which you have completed.
- Practice Analyzing: Analyzing plays a vital role to make thought processes on the given problem.
- Practice with Numbers: Playing with the numbers or creating custom logic is always important.
While solving the guesstimate questions for Data Science, you need to understand these points:
- You’re describing this to someone who’s not in your head. The solution isn’t for you.
- At the same time, remember not to turn each aspect into an entirely new guesstimate itself! It’s easy to get swayed by your intelligence and analytical abilities.
- Focus on the question. Have you heard of analysis-paralysis?
Our learners also read: Top Python Courses for Free
What are the purposes of guesstimate questions for Data Science?
- To understand your capacity to understand a situation.
- To understand the scope of your ability to connect things, to reach an answer.
- To know your strength to prioritize and dismiss different parameters.
- To understand how well you work with inadequate information.
upGrad’s Exclusive Data Science Webinar for you –
Transformation & Opportunities in Analytics & Insights
Explore our Popular Data Science Courses
Here are some guesstimate questions for Data Science-
Question:1 Create an Experiment with the k-means algorithm on the UCI Iris data set:
In this experiment, Perform k-means clustering using all the features in the dataset, and then compare the clustering results with the true class label for all samples.
Use the Multiclass Logistic Regression module to perform multiclass classification and compare its performance with that of k-means clustering.
Question:2 In a very simple format, explain Precision & Recall?
Question:3 If you have been given a data set, how do you decide on which ML algorithm to the user?
Question:4 Is it better to have too many false positives? Or too many false negatives?
Question:5 What is model accuracy and model performance? What scenario can you apply?
Question:6 How do you ensure you are not over-fitting with a model? Explain with an example.
Question:7 When you run a binary classification tree algorithm is quite easy. In the Binary algorithm, how does the tree decide on which variable to split at the root node and its succeeding child nodes?
Read our popular Data Science Articles
Question:8 How are NumPy and SciPy described?
Question:9 Write a basic Machine learning program to check the accuracy of the dataset importing any dataset using any classifier?
Question:10 Create a Regression algorithm to predict the price of a car based on different variables.
Question:11 Develop a model that uses different network features to detect which network activities are part of an intrusion/attack using Binary classifications.
Question:12 How to Group (Clustering) to find similar organizations together based on their Wikipedia description.
Question:13 How would you predict who will renew their subscriptions next month?
- What data would you need to solve this?
- What kind of analysis would you do?
- What kind of predictive models’ algorithms would be needed?
Question:14 How would you map nicknames (Alen, Bob, Alex, Tim, etc.) to real names?
Question:15 Create a prediction on whether scheduled passenger flight is delayed or not using a Binary-classifier with R or python script.
Top Data Science Skills to Learn
Question:16 Predict automobile prices using Linear Regression with Prepare and Cleaned the data by removing the normalized losses column.
Since it has many missing values, create an experiment and model.
Question:17 How many ways can you split 14 people into 4 teams of 5?
Question:18 Area under the standard normal curve is?
- Greater than 1
- Equal to 1
- Less than 1
Question:19 Create a Regression algorithm to predict the price of a car based on different variables.
Question:20 Your manager asked to build a random forest model with 10000 trees during your training, and you got a training error as 0.00. But, on testing, the validation error was 34.23. What basis will you assume what went wrong? How would you check your model if it’s not trained perfectly?
Question:21 ‘People who bought this, also bought…’ recommendations seen on Amazon are based on which algorithm?
Question:22 Which algorithms are linked in recommendations you see as ‘Today’s News and views’?
Read: Data Science Interview Questions
Conclusion
We hope this article helped you understand guesstimate questions for data science and how to overcome them. You will find more useful articles like this one at upGrad; we offer an extensive range of courses, MBA, Data Science, Machine Learning, etc. We provide mentorship from the industries’ best individuals!
If you are interested in learning Data Science and opt for a career in this field, check out IIIT-B & upGrad’s Executive PG Programme in Data Science which is created for working professionals and offers 10+ case studies & projects, practical hands-on workshops, mentorship with industry experts, 1-on-1 with industry mentors, 400+ hours of learning and job assistance with top firms.
Frequently Asked Questions (FAQs)
1. What are the ideal steps to solve a guesstimate problem?
Before answering a guesstimate question, it is wise to keep some points in mind to come with a better idea. These points are as follows - Before starting answering, you should clear all your doubts regarding the question. You can ask as many relevant questions as you want to the interviewer but try to avoid questions that lead to any numerical calculation. This could have a bad impact on the interviewer. It is advisable to stick to yes or no questions to avoid any bad impression. Do not try to solve the problem all at once, instead break it into smaller subproblems and then try to solve each smaller problem. Remember that do not split your problem into more than 6 steps. This method will help you to reach the answer even through lengthy calculations.
2. What is Guesstimate?
Guesstimate is all about understanding the problem and finding the right approach to solve it. It is a methodological method of theory and evaluation. The most important thing in such questions is how you explain the solution.
Guestimation can feel like a daunting task, especially when you first look at the kind of questions asked. From the market sizes of large conglomerates to revenues and populations, calculating some of these quantities even close to a ballpark is realistically impossible.
3. What are the different approaches to solve a guesstimate problem?
Simple Math approach - This approach is mostly in the cases where the number to estimate is some kind of a ratio. Per capita approach - this approach is used when the number to guess can be thought of as a consumption item at a person, household, or population level within geography. Supply & Demand approach - this approach needs you to think about the number either from the supply side or the demand side.