Explore Courses
Liverpool Business SchoolLiverpool Business SchoolMBA by Liverpool Business School
  • 18 Months
Bestseller
Golden Gate UniversityGolden Gate UniversityMBA (Master of Business Administration)
  • 15 Months
Popular
O.P.Jindal Global UniversityO.P.Jindal Global UniversityMaster of Business Administration (MBA)
  • 12 Months
New
Birla Institute of Management Technology Birla Institute of Management Technology Post Graduate Diploma in Management (BIMTECH)
  • 24 Months
Liverpool John Moores UniversityLiverpool John Moores UniversityMS in Data Science
  • 18 Months
Popular
IIIT BangaloreIIIT BangalorePost Graduate Programme in Data Science & AI (Executive)
  • 12 Months
Bestseller
Golden Gate UniversityGolden Gate UniversityDBA in Emerging Technologies with concentration in Generative AI
  • 3 Years
upGradupGradData Science Bootcamp with AI
  • 6 Months
New
University of MarylandIIIT BangalorePost Graduate Certificate in Data Science & AI (Executive)
  • 8-8.5 Months
upGradupGradData Science Bootcamp with AI
  • 6 months
Popular
upGrad KnowledgeHutupGrad KnowledgeHutData Engineer Bootcamp
  • Self-Paced
upGradupGradCertificate Course in Business Analytics & Consulting in association with PwC India
  • 06 Months
OP Jindal Global UniversityOP Jindal Global UniversityMaster of Design in User Experience Design
  • 12 Months
Popular
WoolfWoolfMaster of Science in Computer Science
  • 18 Months
New
Jindal Global UniversityJindal Global UniversityMaster of Design in User Experience
  • 12 Months
New
Rushford, GenevaRushford Business SchoolDBA Doctorate in Technology (Computer Science)
  • 36 Months
IIIT BangaloreIIIT BangaloreCloud Computing and DevOps Program (Executive)
  • 8 Months
New
upGrad KnowledgeHutupGrad KnowledgeHutAWS Solutions Architect Certification
  • 32 Hours
upGradupGradFull Stack Software Development Bootcamp
  • 6 Months
Popular
upGradupGradUI/UX Bootcamp
  • 3 Months
upGradupGradCloud Computing Bootcamp
  • 7.5 Months
Golden Gate University Golden Gate University Doctor of Business Administration in Digital Leadership
  • 36 Months
New
Jindal Global UniversityJindal Global UniversityMaster of Design in User Experience
  • 12 Months
New
Golden Gate University Golden Gate University Doctor of Business Administration (DBA)
  • 36 Months
Bestseller
Ecole Supérieure de Gestion et Commerce International ParisEcole Supérieure de Gestion et Commerce International ParisDoctorate of Business Administration (DBA)
  • 36 Months
Rushford, GenevaRushford Business SchoolDoctorate of Business Administration (DBA)
  • 36 Months
KnowledgeHut upGradKnowledgeHut upGradSAFe® 6.0 Certified ScrumMaster (SSM) Training
  • Self-Paced
KnowledgeHut upGradKnowledgeHut upGradPMP® certification
  • Self-Paced
IIM KozhikodeIIM KozhikodeProfessional Certification in HR Management and Analytics
  • 6 Months
Bestseller
Duke CEDuke CEPost Graduate Certificate in Product Management
  • 4-8 Months
Bestseller
upGrad KnowledgeHutupGrad KnowledgeHutLeading SAFe® 6.0 Certification
  • 16 Hours
Popular
upGrad KnowledgeHutupGrad KnowledgeHutCertified ScrumMaster®(CSM) Training
  • 16 Hours
Bestseller
PwCupGrad CampusCertification Program in Financial Modelling & Analysis in association with PwC India
  • 4 Months
upGrad KnowledgeHutupGrad KnowledgeHutSAFe® 6.0 POPM Certification
  • 16 Hours
O.P.Jindal Global UniversityO.P.Jindal Global UniversityMaster of Science in Artificial Intelligence and Data Science
  • 12 Months
Bestseller
Liverpool John Moores University Liverpool John Moores University MS in Machine Learning & AI
  • 18 Months
Popular
Golden Gate UniversityGolden Gate UniversityDBA in Emerging Technologies with concentration in Generative AI
  • 3 Years
IIIT BangaloreIIIT BangaloreExecutive Post Graduate Programme in Machine Learning & AI
  • 13 Months
Bestseller
IIITBIIITBExecutive Program in Generative AI for Leaders
  • 4 Months
upGradupGradAdvanced Certificate Program in GenerativeAI
  • 4 Months
New
IIIT BangaloreIIIT BangalorePost Graduate Certificate in Machine Learning & Deep Learning (Executive)
  • 8 Months
Bestseller
Jindal Global UniversityJindal Global UniversityMaster of Design in User Experience
  • 12 Months
New
Liverpool Business SchoolLiverpool Business SchoolMBA with Marketing Concentration
  • 18 Months
Bestseller
Golden Gate UniversityGolden Gate UniversityMBA with Marketing Concentration
  • 15 Months
Popular
MICAMICAAdvanced Certificate in Digital Marketing and Communication
  • 6 Months
Bestseller
MICAMICAAdvanced Certificate in Brand Communication Management
  • 5 Months
Popular
upGradupGradDigital Marketing Accelerator Program
  • 05 Months
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in Corporate & Financial Law
  • 12 Months
Bestseller
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in AI and Emerging Technologies (Blended Learning Program)
  • 12 Months
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in Intellectual Property & Technology Law
  • 12 Months
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in Dispute Resolution
  • 12 Months
upGradupGradContract Law Certificate Program
  • Self paced
New
ESGCI, ParisESGCI, ParisDoctorate of Business Administration (DBA) from ESGCI, Paris
  • 36 Months
Golden Gate University Golden Gate University Doctor of Business Administration From Golden Gate University, San Francisco
  • 36 Months
Rushford Business SchoolRushford Business SchoolDoctor of Business Administration from Rushford Business School, Switzerland)
  • 36 Months
Edgewood CollegeEdgewood CollegeDoctorate of Business Administration from Edgewood College
  • 24 Months
Golden Gate UniversityGolden Gate UniversityDBA in Emerging Technologies with Concentration in Generative AI
  • 36 Months
Golden Gate University Golden Gate University DBA in Digital Leadership from Golden Gate University, San Francisco
  • 36 Months
Liverpool Business SchoolLiverpool Business SchoolMBA by Liverpool Business School
  • 18 Months
Bestseller
Golden Gate UniversityGolden Gate UniversityMBA (Master of Business Administration)
  • 15 Months
Popular
O.P.Jindal Global UniversityO.P.Jindal Global UniversityMaster of Business Administration (MBA)
  • 12 Months
New
Deakin Business School and Institute of Management Technology, GhaziabadDeakin Business School and IMT, GhaziabadMBA (Master of Business Administration)
  • 12 Months
Liverpool John Moores UniversityLiverpool John Moores UniversityMS in Data Science
  • 18 Months
Bestseller
O.P.Jindal Global UniversityO.P.Jindal Global UniversityMaster of Science in Artificial Intelligence and Data Science
  • 12 Months
Bestseller
IIIT BangaloreIIIT BangalorePost Graduate Programme in Data Science (Executive)
  • 12 Months
Bestseller
O.P.Jindal Global UniversityO.P.Jindal Global UniversityO.P.Jindal Global University
  • 12 Months
WoolfWoolfMaster of Science in Computer Science
  • 18 Months
New
Liverpool John Moores University Liverpool John Moores University MS in Machine Learning & AI
  • 18 Months
Popular
Golden Gate UniversityGolden Gate UniversityDBA in Emerging Technologies with concentration in Generative AI
  • 3 Years
Rushford, GenevaRushford Business SchoolDoctorate of Business Administration (AI/ML)
  • 36 Months
Ecole Supérieure de Gestion et Commerce International ParisEcole Supérieure de Gestion et Commerce International ParisDBA Specialisation in AI & ML
  • 36 Months
Golden Gate University Golden Gate University Doctor of Business Administration (DBA)
  • 36 Months
Bestseller
Ecole Supérieure de Gestion et Commerce International ParisEcole Supérieure de Gestion et Commerce International ParisDoctorate of Business Administration (DBA)
  • 36 Months
Rushford, GenevaRushford Business SchoolDoctorate of Business Administration (DBA)
  • 36 Months
Liverpool Business SchoolLiverpool Business SchoolMBA with Marketing Concentration
  • 18 Months
Bestseller
Golden Gate UniversityGolden Gate UniversityMBA with Marketing Concentration
  • 15 Months
Popular
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in Corporate & Financial Law
  • 12 Months
Bestseller
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in Intellectual Property & Technology Law
  • 12 Months
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in Dispute Resolution
  • 12 Months
IIITBIIITBExecutive Program in Generative AI for Leaders
  • 4 Months
New
IIIT BangaloreIIIT BangaloreExecutive Post Graduate Programme in Machine Learning & AI
  • 13 Months
Bestseller
upGradupGradData Science Bootcamp with AI
  • 6 Months
New
upGradupGradAdvanced Certificate Program in GenerativeAI
  • 4 Months
New
KnowledgeHut upGradKnowledgeHut upGradSAFe® 6.0 Certified ScrumMaster (SSM) Training
  • Self-Paced
upGrad KnowledgeHutupGrad KnowledgeHutCertified ScrumMaster®(CSM) Training
  • 16 Hours
upGrad KnowledgeHutupGrad KnowledgeHutLeading SAFe® 6.0 Certification
  • 16 Hours
KnowledgeHut upGradKnowledgeHut upGradPMP® certification
  • Self-Paced
upGrad KnowledgeHutupGrad KnowledgeHutAWS Solutions Architect Certification
  • 32 Hours
upGrad KnowledgeHutupGrad KnowledgeHutAzure Administrator Certification (AZ-104)
  • 24 Hours
KnowledgeHut upGradKnowledgeHut upGradAWS Cloud Practioner Essentials Certification
  • 1 Week
KnowledgeHut upGradKnowledgeHut upGradAzure Data Engineering Training (DP-203)
  • 1 Week
MICAMICAAdvanced Certificate in Digital Marketing and Communication
  • 6 Months
Bestseller
MICAMICAAdvanced Certificate in Brand Communication Management
  • 5 Months
Popular
IIM KozhikodeIIM KozhikodeProfessional Certification in HR Management and Analytics
  • 6 Months
Bestseller
Duke CEDuke CEPost Graduate Certificate in Product Management
  • 4-8 Months
Bestseller
Loyola Institute of Business Administration (LIBA)Loyola Institute of Business Administration (LIBA)Executive PG Programme in Human Resource Management
  • 11 Months
Popular
Goa Institute of ManagementGoa Institute of ManagementExecutive PG Program in Healthcare Management
  • 11 Months
IMT GhaziabadIMT GhaziabadAdvanced General Management Program
  • 11 Months
Golden Gate UniversityGolden Gate UniversityProfessional Certificate in Global Business Management
  • 6-8 Months
upGradupGradContract Law Certificate Program
  • Self paced
New
IU, GermanyIU, GermanyMaster of Business Administration (90 ECTS)
  • 18 Months
Bestseller
IU, GermanyIU, GermanyMaster in International Management (120 ECTS)
  • 24 Months
Popular
IU, GermanyIU, GermanyB.Sc. Computer Science (180 ECTS)
  • 36 Months
Clark UniversityClark UniversityMaster of Business Administration
  • 23 Months
New
Golden Gate UniversityGolden Gate UniversityMaster of Business Administration
  • 20 Months
Clark University, USClark University, USMS in Project Management
  • 20 Months
New
Edgewood CollegeEdgewood CollegeMaster of Business Administration
  • 23 Months
The American Business SchoolThe American Business SchoolMBA with specialization
  • 23 Months
New
Aivancity ParisAivancity ParisMSc Artificial Intelligence Engineering
  • 24 Months
Aivancity ParisAivancity ParisMSc Data Engineering
  • 24 Months
The American Business SchoolThe American Business SchoolMBA with specialization
  • 23 Months
New
Aivancity ParisAivancity ParisMSc Artificial Intelligence Engineering
  • 24 Months
Aivancity ParisAivancity ParisMSc Data Engineering
  • 24 Months
upGradupGradData Science Bootcamp with AI
  • 6 Months
Popular
upGrad KnowledgeHutupGrad KnowledgeHutData Engineer Bootcamp
  • Self-Paced
upGradupGradFull Stack Software Development Bootcamp
  • 6 Months
Bestseller
KnowledgeHut upGradKnowledgeHut upGradBackend Development Bootcamp
  • Self-Paced
upGradupGradUI/UX Bootcamp
  • 3 Months
upGradupGradCloud Computing Bootcamp
  • 7.5 Months
PwCupGrad CampusCertification Program in Financial Modelling & Analysis in association with PwC India
  • 5 Months
upGrad KnowledgeHutupGrad KnowledgeHutSAFe® 6.0 POPM Certification
  • 16 Hours
upGradupGradDigital Marketing Accelerator Program
  • 05 Months
upGradupGradAdvanced Certificate Program in GenerativeAI
  • 4 Months
New
upGradupGradData Science Bootcamp with AI
  • 6 Months
Popular
upGradupGradFull Stack Software Development Bootcamp
  • 6 Months
Bestseller
upGradupGradUI/UX Bootcamp
  • 3 Months
PwCupGrad CampusCertification Program in Financial Modelling & Analysis in association with PwC India
  • 4 Months
upGradupGradCertificate Course in Business Analytics & Consulting in association with PwC India
  • 06 Months
upGradupGradDigital Marketing Accelerator Program
  • 05 Months

House Price Prediction Using Machine Learning in Python

Updated on 11 October, 2023

6.2K+ views
8 min read

Introduction 

A key difficulty for buyers, sellers, and investors alike, the real estate market is a dynamic and ever-changing world, making precise home price forecasts difficult. Machine learning (ML) algorithms have recently become effective tools for analyzing massive volumes of data and making remarkably accurate property price predictions. This article delves into the fascinating realm of housing market predictions for next 5 years using Python and ML algorithms.

By leveraging historical property data, such as location, size, amenities, and market trends, ML models can learn complex patterns and relationships to make informed predictions about future property prices. Python offers a flexible and user-friendly framework for developing, training and deploying these predictive models thanks to its rich libraries, including Scikit-learn, Pandas, and NumPy. We will examine how to anticipate home values using Python and machine learning in this post.

Why Python? 

Python is the ideal choice for house price prediction using machine learning due to its versatile and extensive libraries, making it a popular language in the data science community. Libraries like Pandas provide efficient data manipulation, while NumPy offers numerical computation capabilities. Scikit-learn simplifies machine learning tasks with its user-friendly API, allowing easy implementation of regression algorithms like Linear Regression, Decision Trees, and Random Forests. Python’s rich ecosystem includes powerful visualization libraries like Matplotlib and Seaborn, aiding in data exploration and model evaluation. Additionally, Jupyter Notebooks enable interactive development and documentation of the prediction process.

Because of the robust community behind Python, there are many tutorials, examples, and open-source projects available, making it simpler for newcomers to get started. Its scalability and language compatibility make it the go-to option for home price prediction, enabling easy connection with online applications and data pipelines. Ultimately, Python’s simplicity and efficiency empower data scientists to build robust and accurate house price prediction models. You can also pursue MS in Full Stack AI and ML to get in-depth knowledge.

Importance and Applications of House Price Prediction 

House price prediction using machine learning in Python is crucial for various reasons and finds applications in the real estate industry and financial sectors. Predicting house prices accurately aids homebuyers in making informed decisions about their investments. For sellers, it assists in setting competitive prices for their properties. Real estate agents benefit from better market insights and improved negotiation strategies. 

Machine learning models leverage historical property data, features like location, square footage, number of bedrooms, and local amenities to predict house prices. Advanced algorithms such as regression, random forests, and gradient boosting are commonly employed for this task. 

Moreover, house price prediction project plays a pivotal role in financial planning and risk assessment for mortgage lenders and insurers. Additionally, governments and policymakers use this data to analyze housing market trends and formulate housing policies effectively. Overall, accurate house price prediction project report empowers stakeholders with valuable information, fostering a more transparent and efficient real estate market.

 Check out upGrad’s free courses on AI.

Importing Libraries and Dataset  

House price prediction using machine learning in Python involves predicting the prices of houses based on various features. To start, we import essential libraries such as NumPy, Pandas, Scikit-learn, and Matplotlib. Next, we load the house price dataset, containing features like the number of bedrooms, bathrooms, square footage, location, etc.

Python
# Python Implementation 
import numpy as np 
import pandas as pd 
from sklearn.model_selection import train_test_split 
from sklearn.linear_model import LinearRegression

 

# Load the dataset 
data = pd.read_csv('house_prices_dataset.csv')

 

# Output first few rows of the dataset 
print(data.head())

Enroll for the Machine Learning Course from the World’s top Universities. Earn Masters, Executive PGP, or Advanced Certificate Programs to fast-track your career.

Loading and Preprocessing Data

Loading and preprocessing data are crucial steps in real estate price prediction using machine learning. To handle the data successfully in this example, we’ll use Python and well-known tools like Pandas and NumPy. 

The information, which includes characteristics like house size, location, and the number of beds, must first be assembled. Pandas, a potent data manipulation tool, is used to import the data, allowing us to read the dataset into a data frame. 

The next step is crucial data preparation to guarantee the data is pure and appropriate for training our model. We handle missing values, encode categorical variables, and scale numerical features using techniques like Min-Max scaling or Standardization. 

Python implementation may look like this:

python
import pandas as pd 
from sklearn.preprocessing import MinMaxScaler  
# Load data 
data = pd.read_csv('house_prices.csv')  
# Preprocessing 
data = data.dropna()  # Drop rows with missing values 
X = data[['HouseSize', 'Location', 'Bedrooms']] 
y = data['Price']  
# Encode categorical variables (if applicable)  
# Scale numerical features 
scaler = MinMaxScaler() 
X_scaled = scaler.fit_transform(X)  
# Rest of the machine learning pipeline... 

The output would be a cleaned and preprocessed dataset ready for use in machine-learning models to predict house prices based on input features. With this prepared data, we can proceed to feature selection, model training, and evaluation for an accurate house price prediction model. 

Exploratory Data Analysis

Exploratory Data Analysis (EDA) is a critical step in any data analysis project, including house price prediction using machine learning in Python. It involves the process of visualizing, understanding, and summarizing the main characteristics of the dataset before building the predictive model.

For example, let’s consider a dataset containing features like square footage, number of bedrooms, bathrooms, and location for house price prediction. The EDA process may include examining data distribution, identifying missing values, checking for outliers, and exploring relationships between variables. 

In Python, the popular libraries for EDA are Pandas, Matplotlib, and Seaborn. A sample implementation may look like this:


Python
import pandas as pd 
import matplotlib.pyplot as plt 
import seaborn as sns 

 

# Load the dataset 
data = pd.read_csv('house_data.csv')

 

# Data summary 
print(data.head()) 
print(data.info()) 
print(data.describe()) 

 

# Data visualization 
plt.figure(figsize=(10, 6)) 
sns.histplot(data['Price'], kde=True) 
plt.title('House Price Distribution') 
plt.xlabel('Price') 
plt.ylabel('Frequency') 
plt.show() 

 

plt.figure(figsize=(10, 6)) 
sns.scatterplot(x='SquareFootage', y='Price', data=data) 
plt.title('Price vs. Square Footage') 
plt.show() 

 

# Correlation heatmap 
plt.figure(figsize=(10, 8)) 
correlation_matrix = data.corr() 
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm') 
plt.title('Correlation Heatmap') 
plt.show() 

The output of this Python implementation will include: 

  1. The first few rows of the dataset get an initial view of the data. 
  2. Data information such as the number of non-null entries and data types of each column. 
  3. Descriptive statistics of the dataset like mean, standard deviation, min, max, etc. 
  4. Visualizations like histograms showing the distribution of house prices, scatter plots displaying the relationship between price and square footage, and a heatmap revealing the correlation between different features. 

Data Cleaning

Data cleaning is a crucial step in the process of building a machine-learning model for real estate market predictions. It involves identifying and rectifying errors, inconsistencies, and missing values in the dataset.

Python
# Python Implementation 
# Handling outliers 
data = data[(data['price'] >= 100000) & (data['price'] <= 1000000)] 

 

# Removing duplicate 
data.drop_duplicates(inplace=True) 

 

# Normalizing numerical features 
data['area'] = (data['area'] - data['area'].min()) / (data['area'].max() - data['area'].min())

Data Visualization on the House Price Data

Data visualization plays a crucial role in understanding patterns and insights from complex datasets, such as house price data.

Python
# Python Implementation 
# Visualizing the distribution of house prices 
plt.hist(data['price'], bins=20) 
plt.xlabel('Price') 
plt.ylabel('Frequency') 
plt.show()

 

# Visualizing the relationship between area and price 
plt.scatter(data['area'], data['price']) 
plt.xlabel('Area') 
plt.ylabel('Price') 
plt.show() 

Feature Selection & Data Split

Selecting relevant features is crucial for building an accurate model. We then split the data into training and testing sets.

Python
# Python Implementation 
from sklearn.feature_selection import SelectKBest, f_regression 

 

# Feature selection using SelectKBest 
selector = SelectKBest(score_func=f_regression, k=5) 
X_train_selected = selector.fit_transform(X_train, y_train) 
X_test_selected = selector.transform(X_test)  

Model Selection and Accuracy:

 In this step, we select an appropriate machine learning algorithm, train it on the training data, and evaluate its performance on the test data.

Python
# Python Implementation 
from sklearn.ensemble import RandomForestRegressor 
from sklearn.metrics import mean_squared_error 

 

# Model training 
model = RandomForestRegressor() 
model.fit(X_train_selected, y_train) 

 

# Model prediction 
y_pred = model.predict(X_test_selected) 

 

# Model evaluation 
mse = mean_squared_error(y_test, y_pred) 
accuracy = 1 - (mse / np.var(y_test)) 
print("Model Accuracy:", accuracy)

 

Model Evaluation

We evaluate the model using metrics such as mean squared error, R-squared, or accuracy.

Python
# Python Implementation 
from sklearn.metrics import r2_score 

 

# R-squared score 
r2 = r2_score(y_test, y_pred) 
print("R-squared:", r2)

Conclusion

In conclusion, this article explored the fascinating realm of house price prediction using machine learning in Python. By leveraging various algorithms and data preprocessing techniques, we demonstrated how predictive models can be developed to estimate house prices with remarkable accuracy.

The significance of feature engineering in enhancing model performance was evident, as it allowed us to extract meaningful insights from the dataset and capture essential patterns.

The approaches for predicting property prices are constantly changing in line with the area of machine learning. Such housing market predictions will likely grow more accurate and effective as new algorithms and data become accessible.

This essay lays the groundwork for people who are interested in using machine learning to analyze real estate data, fostering further investigation and creativity in this fascinating field. Acquire deeper knowledge about this via the Advanced Certificate Programme in Machine Learning & NLP from IIITB.

Frequently Asked Questions (FAQs)

1. What is House Price Prediction using Machine Learning in Python?

House Price Prediction using Machine Learning in Python is a data-driven approach that leverages advanced algorithms to estimate property prices based on relevant features. By utilizing Python libraries like Scikit-learn and Pandas, this method can analyze historical property data and build predictive models for real estate market trends.

2. How accurate are the predictions?

The accuracy of house price predictions depends on various factors, including the quality and quantity of data, feature selection, and the chosen machine learning model. Generally, regression-based models like Linear Regression and Decision Trees can yield reasonable accuracy for house price predictions, achieving R-squared values above 0.7.

3. What features are crucial for accurate predictions?

Features play a crucial role in determining prediction accuracy. Essential features often include location, property size, number of bedrooms and bathrooms, amenities, and nearby infrastructure. Additionally, factors like crime rates, school district quality, and economic trends can further enhance prediction performance.

4. Is Python the best language for this task?

Python is widely preferred for house price prediction due to its rich ecosystem of machine-learning libraries and ease of use. Its robust packages like Scikit-learn make model building and evaluation convenient, making Python an excellent choice for this task.

5. Can this approach assist in real estate decision-making?

Absolutely! House price prediction using machine learning in Python can provide valuable insights to buyers, sellers, and real estate professionals. It empowers them with data-driven information, aiding in property valuation, investment decisions, and pricing strategies.