- Blog Categories
- Software Development
- Data Science
- AI/ML
- Marketing
- General
- MBA
- Management
- Legal
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- Software Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Explore Skills
- Management Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
How Machine Learning Algorithms Made Self Driving Cars Possible?
Updated on 23 September, 2022
10.28K+ views
• 7 min read
Table of Contents
One of the most remarkable applications of Machine Learning is the self-driving or autonomous car.
Machine Learning, combined with other disruptive technologies like IoT, is helping improve and enhance the functioning of autonomous cars. Thanks to ML, these autonomous cars are very much capable of sensing the environment around them and moving safely, requiring very little or no human intervention whatsoever.
Best Machine Learning and AI Courses Online
Machine Learning Project Ideas
While ML is a crucial component of the centralized electronic control unit (ECU) in an autonomous car, efforts are being made to integrate ML even further in self-driving cars to shape them state-of-the-art creations. One of the primary functions of ML algorithms in an autonomous car is continuous monitoring of the surrounding environment and accurately predicting the possible changes to that surrounding. This core task can be further segmented.
In-demand Machine Learning Skills
The Four Sub-Tasks
- Object detection
- Object identification/recognition
- Object localization
- Movement prediction
Self-driving cars usually incorporate numerous sensors that help them make sense of their surroundings, including GPS, radar, lidar, sonar, odometry, and inertial measurement units. They also have advanced control systems that can interpret sensory information to identify obstacles and figure out suitable navigation paths.
The ML-based applications that run an autonomous car’s infotainment system receive information from the sensor data fusion systems and make predictions accordingly. These algorithms can also integrate the driver’s gesture, speech recognition, and language translation in the car’s system.
Machine Learning Algorithms For Self-Driving Cars
1) Supervised ML algorithms
These algorithms use training dataset to learn. They keep learning until they reach the desired level that promises minimal errors. Supervised ML algorithms can further be categorized into classification, regression, and dimension reduction algorithms. For detailed information about the type of Machine Learning algorithms, read about Types of Machine Learning Algorithms
2) Unsupervised ML algorithms
These algorithms learn by making sense of the data at hand. No training datasets are used here. They try to find identifiable patterns within the data and then divide the data into classes/groups according to the level of similarity between them. Clustering and association rule learning are the two types of unsupervised ML algorithms.
Now, let’s dive into the inner workings of self-driving car algorithms. Machine Learning Algorithms for Autonomous Cars.
Machine Learning Algorithms for Autonomous Cars
Self-driving car Machine Learning algorithms are generally divided into four categories:
1) Regression Algorithms
Regression algorithms are used explicitly for predicting events. Bayesian regression, neural network regression, and decision forest regression are the three main types of regression algorithms used in self-driving cars.
In regression analysis, the relationship between two or more variables is estimated, and the effects of the variables are compared on different scales. Regression analysis is mainly dependent on three core metrics:
- The number of independent variables
- The type of dependent variables
- The shape of the regression line.
Regression algorithms use the repetitive aspects of an environment to form a statistical model of the relation between a particular image and the position of a specific object within the image. The statistical model can provide speedy online detection through image sampling. Gradually, it can extend to learn about other objects as well, without requiring substantial human intervention.
2) Pattern Recognition Algorithms (Classification)
Generally, the images obtained by the advanced driver-assistance systems (ADAS) are replete with an array of data from the surrounding environment. This data needs to be filtered to recognize the relevant images containing a specific category of objects. This is where pattern recognition algorithms enter.
Also known as data reduction algorithms, pattern recognition algorithms are designed to rule out unusual data points. Recognition of patterns in a data set is an essential step before classifying the objects.
These algorithms help in filtering the data obtained through the sensors by detecting object edges, and fitting line segments and circular arcs to the edges. Pattern recognition algorithms combine the line segments and circular arcs in many different ways to form the ultimate features for recognizing an object.
Support vector machines (SVM) with histograms of oriented gradients (HOG), principal component analysis (PCA), Bayes decision rule, and k-nearest neighbor (KNN) are some of the most commonly used pattern recognition algorithms in self-driving cars.
3) Cluster Algorithms
Cluster algorithms excel at discovering structure from data points. It may happen that the images obtained by the ADAS aren’t clear, or it may also occur that classification algorithms have missed identifying an object, thereby failing to classify and report it to the system.
This may happen due to the images being of very low-resolution or with very few data points. In such situations, it becomes difficult for the system to detect and locate objects in the surroundings.
Clustering algorithms define the class of problem and class of methods. Generally, clustering techniques are established using centroid-based and hierarchical modeling approaches. All clustering techniques focus on leveraging the inherent structures in the data to best organize the data into groups having the greatest commonality.
K-means and multi-class neural networks are the two most widely used clustering algorithms for autonomous cars.
4) Decision Matrix Algorithms
Decision matrix algorithms are essentially used for decision making. They are designed for systematically identifying, analyzing, and rating the performance of relationships between sets of values and information in them. The most widely used decision matrix algorithms in autonomous cars are gradient boosting (GDM) and AdaBoosting.
These algorithms determine the moves of the self-driving car. So, whether the car needs to take a left or a right turn, whether it needs to brake or accelerate, the answer to such questions is determined by the accuracy of these algorithms concerning classification, recognition, and prediction of the objects’ next movement.
Decision matrix algorithms comprise independently trained multiple decision models whose predictions are combined to generate the overall prediction while minimizing the possibility of errors.
Popular AI and ML Blogs & Free Courses
Conclusion
Together, all these ML algorithms go into the functioning of self-driving cars as we know it. At present, self-driving cars can perform the basic tasks of a human driver, such as controlling, navigating, and driving the vehicle, but of course, there are certain limitations to it as well. However, with further advancement of Machine Learning and improvement of self-driving car algorithms, we have a lot to look forward to from these autonomous cars.
If you are interested in learning machine learning and curious to learn how to train a chatbot, how to train an agent to play tic tac toe and more, check out IIIT-B’s PG Diploma in Machine Learning and AI program.
Frequently Asked Questions (FAQs)
1. What machine learning do self-driving cars use?
The brains of a self-driving car can be divided into three parts: the perception system, the decision system and the motion system. The perception system is what allows the car to see the environment. Automotive cameras, radar, laser scanners and ultrasound are used to capture the environment around the car so it can see. The decision system is where most of the machine learning happens. This is where the car's computer system analyzes the information from the perception system and decides what to do next. The third part is the motion system, which is the part that makes the car move. The machine learning part of this is making sure the car is aware of its surroundings and can react to pedestrians and other cars appropriately.
2. Do self-driving cars use deep learning?
The answer is yes. Artificial Neural Networks have been used in self-driving cars since the beginning. As such, Deep Learning is the only technology that has the capability to create self-driving cars, trucks, boats and other vehicles. Deep Learning is not just able to control vehicles autonomously in the real world, but it is also able to learn how to control vehicles more effectively by gathering and analyzing practical driving data. In other words, Deep Learning is the only technology that has the capability to create self-driving cars, trucks, boats and other vehicles.
3. How do self-driving cars process data?
Self-driving cars process data from many sensors. These sensors are placed around the car and can detect objects such as pedestrians, other cars, traffic lights and signs, etc. Also, the car can detect the environment around itself, just like humans do. When it detects an object, the sensors send data to the main computer. The computer processes this data and figures out the image of the object. It then compares the image with the images stored in its database. If the image of the object is similar, then the computer will move the car accordingly.
RELATED PROGRAMS