- Blog Categories
- Software Development
- Data Science
- AI/ML
- Marketing
- General
- MBA
- Management
- Legal
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- Software Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Explore Skills
- Management Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
How to Choose a Feature Selection Method for Machine Learning
Updated on 24 November, 2022
6.68K+ views
• 11 min read
Table of Contents
Feature Selection Introduction
Lots of features are used by a machine learning model of which only a few of them are important. There is a reduced accuracy of the model if unnecessary features are used to train a data model. Further, there is an increase in the complexity of the model and a decrease in the Generalization capability resulting in a biased model. The saying “sometimes less is better” goes well with the concept of machine learning. The problem has been faced by a lot of users where they find it difficult to identify the set of relevant features from their data and ignore all the irrelevant sets of features. The less important features are termed so as they don’t contribute to the target variable.
Top Machine Learning and AI Courses Online
Therefore, one of the important processes is feature selection in machine learning. The goal is to select the best possible set of features for the development of a machine learning model. There is a huge impact on the performance of the model by the feature selection. Along with data cleaning, feature selection should be the first step in a model design.
Feature selection in Machine Learning may be summarized as
- Automatic or manual selection of those features that are contributing most to the prediction variable or the output.
- The presence of irrelevant features might lead to a decreased accuracy of the model as it will learn from irrelevant features.
Trending Machine Learning Skills
Benefits of Feature Selection
- Reduces overfitting of data: a less number of data leads to lesser redundancy. Therefore there are fewer chances of making decisions on noise.
- Improves accuracy of the model: with lesser chance of misleading data, the accuracy of the model is increased.
- Training time is reduced: removal of irrelevant features reduces the algorithm complexity as only fewer data points are present. Therefore, the algorithms train faster.
- The complexity of the model is reduced with better interpretation of the data.
Supervised and Unsupervised methods of feature selection
The main objective of the feature selection algorithms is to select out a set of best features for the development of the model. Feature selection methods in machine learning can be classified into supervised and unsupervised methods.
- Supervised method: the supervised method is used for the selection of features from labeled data and also used for the classification of the relevant features. Hence, there is increased efficiency of the models that are built up.
- Unsupervised method: this method of feature selection is used for the unlabeled data.
List of Methods Under Supervised Methods
Supervised methods of feature selection in machine learning can be classified into
1. Wrapper Methods
This type of feature selection algorithm evaluates the process of performance of the features based on the results of the algorithm. Also known as the greedy algorithm, it trains the algorithm using a subset of features iteratively. Stopping criteria are usually defined by the person training the algorithm. The addition and removal of features in the model take place based on the prior training of the model. Any type of learning algorithm can be applied in this search strategy. The models are more accurate compared to the filter methods.
Techniques used in Wrapper methods are:
- Forward selection: The forward selection process is an iterative process where new features that improve the model are added after each iteration. It starts with an empty set of features. The iteration continues and stops until a feature is added that doesn’t further improve the performance of the model.
- Backward selection/elimination: The process is an iterative process that starts with all the features. After each iteration, the features with the least significance are removed from the set of initial features. The stopping criterion for the iteration is when the performance of the model doesn’t improve further with the removal of the feature. These algorithms are implemented in the mlxtend package.
- Bi-directional elimination: Both methods of forward selection and backward elimination technique are applied simultaneously in the Bi-directional elimination method to reach one unique solution.
- Exhaustive feature selection: It is also known as the brute force approach for the evaluation of feature subsets. A set of possible subsets are created and a learning algorithm is built for each subset. That subset is chosen whose model gives the best performance.
- Recursive Feature elimination (RFE): The method is termed to be greedy as it selects features by recursively considering the smaller and smaller set of features. An initial set of features are used for training the estimator and their importance is obtained using feature_importance_attribute. It is then followed through the removal of the least important features leaving behind only the required number of features. The algorithms are implemented in the scikit-learn package.
Figure 4: An example of code showing the recursive feature elimination technique
2. Embedded methods
The embedded feature selection methods in machine learning have a certain advantage over the filter and wrapper methods by including feature interaction and also maintaining a reasonable computational cost. Techniques used in embedded methods are:
- Regularization: Overfitting of data is avoided by the model by adding a penalty to the parameters of the model. Coefficients are added with the penalty resulting in some coefficients to be zero. Therefore those features that have a zero coefficient are removed from the set of features. The approach of feature selection uses Lasso (L1 regularization) and Elastic nets (L1 and L2 regularization).
- SMLR (Sparse Multinomial Logistic Regression): The algorithm implements a sparse regularization by ARD prior (Automatic relevance determination) for the classical multinational logistic regression. This regularization estimates the importance of each feature and prunes the dimensions which are not useful for the prediction. Implementation of the algorithm is done in SMLR.
- ARD (Automatic Relevance Determination Regression): The algorithm will shift the coefficient weights towards zero and is based on a Bayesian Ridge Regression. The algorithm can be implemented in scikit-learn.
- Random Forest Importance: This feature selection algorithm is an aggregation of a specified number of trees. Tree-based strategies in this algorithm rank on the basis of increasing the impurity of a node or decreasing the impurity (Gini impurity). The end of the trees consists of the nodes with the least decrease in impurity and the start of the trees consists of nodes with the greatest decrease in impurity. Therefore, important features can be selected out through pruning of the tree below a particular node.
3. Filter methods
The methods are applied during the pre-processing steps. The methods are quite fast and inexpensive and work best in the removal of duplicated, correlated, and redundant features. Instead of applying any supervised learning methods, the importance of features is evaluated based on their inherent characteristics. The computational cost of the algorithm is lesser compared to the wrapper methods of feature selection. However, if enough data is not present to derive the statistical correlation between the features, the results might be worse than the wrapper methods. Therefore, the algorithms are used over high dimensional data, which would lead to a higher computational cost if wrapper methods are to be applied.
Techniques used in the Filter methods are:
- Information Gain: Information gain refers to how much information is gained from the features to identify the target value. It then measures the reduction in the entropy values. Information gain of each attribute is calculated considering the target values for feature selection.
- Chi-square test: The Chi-square method (X2) is generally used to test the relationship between two categorical variables. The test is used to identify if there is a significant difference between the observed values from different attributes of the dataset to its expected value. A null hypothesis states that there is no association between two variables.
The formula for Chi-square test
Implementation of Chi-Squared algorithm: sklearn, scipy
An example of code for Chi-square test
4. CFS (Correlation-based feature selection): The method follows “Features are relevant if their values vary systematically with category membership.” Implementation of CFS (Correlation-based feature selection): scikit-feature
Join the AI & ML Courses online from the World’s top Universities – Masters, Executive Post Graduate Programs, and Advanced Certificate Program in ML & AI to fast-track your career.
5. FCBF (Fast correlation-based filter): Compared to the above-mentioned methods of Relief and CFS, the FCBF method is faster and more efficient. Initially, the computation of Symmetrical Uncertainty is carried out for all features. Using these criteria, the features are then sorted out and redundant features are removed.
Symmetrical Uncertainty= the information gain of x | y divided by the sum of their entropies. Implementation of FCBF: skfeature
6. Fischer score: Fischer ration (FIR) is defined as the distance between the sample means for each class per feature divided by their variances. Each feature is independently selected according to their scores under the Fisher criterion. This leads to a suboptimal set of features. A larger Fisher’s score denotes a better-selected feature.
The formula for Fischer score
Implementation of Fisher score: scikit-feature
The output of the code showing Fisher score technique
Pearson’s Correlation Coefficient: It is a measure of quantifying the association between the two continuous variables. The values of the correlation coefficient range from -1 to 1 which defines the direction of relationship between the variables.
7. Variance Threshold: The features whose variance doesn’t meet the specific threshold are removed. Features having zero variance are removed through this method. The assumption considered is that higher variance features are likely to contain more information.
Figure 15: An example of code showing the implementation of Variance threshold
8. Mean Absolute Difference (MAD): The method calculates the mean absolute
difference from the mean value.
An example of code and its output showing the implementation of Mean Absolute Difference (MAD)
9. Dispersion Ratio: Dispersion ratio is defined as the ratio of the Arithmetic mean (AM) to that of Geometric mean (GM) for a given feature. Its value ranges from +1 to ∞ as AM ≥ GM for a given feature.
A higher dispersion ratio implies a higher value of Ri and therefore a more relevant feature. Conversely, when Ri is close to 1, it indicates a low relevance feature.
- Mutual Dependence: The method is used to measure the mutual dependence between two variables. Information obtained from one variable may be used to obtain information for the other variable.
- Laplacian Score: Data from the same class are often close to each other. The importance of a feature can be evaluated by its power of locality preservation. Laplacian Score for each feature is calculated. The smallest values determine important dimensions. Implementation of Laplacian score: scikit-feature.
Popular AI and ML Blogs & Free Courses
Conclusion
Feature selection in the machine learning process can be summarized as one of the important steps towards the development of any machine learning model. The process of the feature selection algorithm leads to the reduction in the dimensionality of the data with the removal of features that are not relevant or important to the model under consideration. Relevant features could speed up the training time of the models resulting in high performance.
If you’re interested to learn more about machine learning, check out IIIT-B & upGrad’s Executive PG Program in Machine Learning & AI which is designed for working professionals and offers 450+ hours of rigorous training, 30+ case studies & assignments, IIIT-B Alumni status, 5+ practical hands-on capstone projects & job assistance with top firms.
Frequently Asked Questions (FAQs)
1. How is the filter method different from the wrapper method?
The wrapper method helps to measure how helpful the features are based on classifier performance. The filter method, on the other hand, assesses the intrinsic qualities of the features using univariate statistics rather than cross-validation performance, implying that they judge the relevance of the features. As a result, the wrapper method is more effective since it optimizes classifier performance. However, because of the repeated learning processes and cross-validation, the wrapper technique is computationally more expensive than the filter method.
2. What is Sequential Forward Selection in Machine Learning?
It's a kind of sequential feature selection, although it's a lot more costly than filter selection. It's a greedy search technique that iteratively selects features based on classifier performance in order to discover the ideal feature subset. It begins with an empty feature subset and continues to add one feature in every round. This one feature is chosen from a pool of all the features that aren't in our feature subset, and it's the one that results in the finest classifier performance when combined with the others.
3. What are the limitations of using the filter method for feature selection?
The filter approach is computationally less expensive than the wrapper and embedded feature selection methods, but it has some drawbacks. In the case of univariate approaches, this strategy frequently ignores feature interdependence while selecting features and evaluates each feature independently. When compared to the other two methods of feature selection, this might sometimes result in poor computing performance.
RELATED PROGRAMS