- Blog Categories
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Gini Index for Decision Trees
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Brand Manager Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Search Engine Optimization
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
How Uber Uses Data Analytics For Supply Positioning & Segmentation
Updated on 24 November, 2022
7.44K+ views
• 10 min read
Table of Contents
- Why this Program?
- Supply Optimization at Uber
- How is Supply Positioning Done At Uber?
- Building Models Based on Historical Data
- Key Steps to How the Model was Built
- Supply Positioning in a Nutshell
- Meeting the Demand-Supply Gap with Predictive Analytics
- Analysis is Automated to Drive Results
- Objective of Historical Analysis – Build Forecasting Model
- A/B Testing & Clustering/Segmentation Analysis
- SQL Still Triumphs in Data Analytics
- Visualization at Uber
This article was originally published in Analytics India Magazine.
What forms the core of businesses today? Huge volumes of data that flow in and out every day — and though it does matter, what really comes into play is the ability to use data and models to make better business decisions. UpGrad has collaborated with Uber for the Data Analytics Program content and a very central case-study.
Sai Alluri, Analytics Lead at Uber India talks about supply positioning models, segmentation and visualization tools that are applied at Uber, and how Uber stays on top of the game by understanding the biggest mismatch between supply and demand.
Why this Program?
- Get a peek into how Uber analyses historical data, uses it as a benchmark and predicts future action
- Get pointers from the best in the industry: Sai Alluri part of Uber’s PRO team
- Learn how to leverage analytics to stave off competition
Launching UpGrad’s Data Analytics Roadshow – Are You Game?
Supply Optimization at Uber
The supply positioning model at Uber refers to anticipating demand patterns, and placing driver partners across those hubs with the aim to plug in the demand, lower ETAs and increase overall efficiency. One of the key focus areas is moving from a passive supply-positioning model to act through specific recommendations across the network.
How is Supply Positioning Done At Uber?
In the words of Alluri — supply optimization is one of the biggest focuses at Uber and the challenge is to efficiently optimize the supply wherever there are high areas of demand (or can be). One of the methodologies is through search surge, in real time, meaning that supply comes in from the area of highest demand. Say for example, when you see a search surge multiple in 2x or 3x, it portrays how much demand is in that particular area and what supply would you need to meet this demand.
Building Models Based on Historical Data
Uber analyzes historical data for about three or four weeks and identifies pockets within the city that witnesses extremely high demand. Let’s take Gurgaon as a case in point. “Say, there is a high search-surge multiple in Connaught Place and our driver partner is in Gurgaon which is X kms from CP. It is very difficult for a driver to move from Gurgaon to CP given the traffic conditions and it might take him longer to reach. How do we know in advance where this demand is going to be based on historical data?” asks Alluri.
Key Steps to How the Model was Built
- Look at historical data for the last three or four weeks
- Look at the time, day and specific areas within the city where the highest demand comes in from
- Key metric is the number of requests coming in and how many are getting completed in different pockets of the city
- If a specific pocket has a really low completed trips request, it implies a high demand in that hub but not enough supply
- Next step is to focus on how to proactively tell drivers to move within these areas, not in real time but a 2-hour or 3-hour lag so that they can position themselves there when the demand arises
Decoding Easy Vs. Not-So-Easy Data Analytics
Supply Positioning in a Nutshell
Uber does supply positioning by specifically a) breaking down the city into multiple pockets, b) then identifying these pockets based on the demand parameters that show up, c) once you identify these pockets, you can figure out how you want to position the supply chain in these specific areas.
“For example, a specific pocket has a low complete-request ratio or has a fewer number of rides completed as compared to other areas, what should be done is ensuring how to get drivers in the demand hub in time,” says Alluri.
Key parameters addressed for the analysis are: broken up by the hour of the day, by day of the week and by the specific pocket.
Meeting the Demand-Supply Gap with Predictive Analytics
So now that you have the information, how do you use it to inform future decisions? In case of Uber, the real challenge is in filling the demand-supply gap. “The idea is to figure out if the highest area of demand is in one specific pocket but the supply is going to come in from a different pocket. Which means we need to send this message to driver-partners early so that they can get to this specific area and are ready to go when the demand hits,” points out Alluri.
Explore our Popular Data Science Courses
Analysis is Automated to Drive Results
- Uber sends out weekly communications to drivers in real time
- Weekly communications inform about high demand areas, with specific recommendations
- Enabling driver-partners to make best decisions, increase earnings and lower ETAs
Read our popular Data Science Articles
What’s Cooking in Data Analytics? Team Data at UpGrad Speaks Up!
Objective of Historical Analysis – Build Forecasting Model
Alluri informs that the idea behind analyzing three-four weeks of data for a specific city, further broken down into specific hub/pocket within the city – and by the hour of day and day of the week – is to get consistent behaviour across that time period, for that particular pocket. The motive is to set a benchmark and rule out weekly anomalies. And it is further used to build a potential forecasting model, where one can predict the highest demand or lowest supply and keep modifying it on a weekly or bi-weekly basis as the data changes.
A/B Testing & Clustering/Segmentation Analysis
At Uber, the goal is to drive efficiency across all areas of business. A/B testing was to find the most optimized and effective communications that had to be dispatched to driver-partners to address their issues, convert drivers to become loyal Uber partners by incentivizing.
“We want to make the process for a driver-partner signing up on our platform easy and scalable so that they can reach out to us for specific issues, such as using the app. For example, as soon as the driver becomes active on our system, we want to make sure if he has any questions pertaining to how do you go online or how do you essentially go pick up your customer (they are answered). So we monitor every aspect of this journey map at different cycles,” says Alluri.
The communication dispatch was targeted at converting drivers into loyal Uber partners. An A/B test was set up for two specific cohorts of drivers who had joined in the same week. Let’s keep 100 drivers in cohort A and another 100 in cohort B.
- Idea is to find out how many don’t take the trip in the first 3-4 days
- Reach out with specific communications to drivers who still haven’t gotten activated
- Did the communication improve efficiency and drive conversions vis a vis cohort B that did not receive any messaging
Top Data Science Skills to Learn
The goal of A/B test was to use resources, in this case, communications and incentives, effectively:
- Lift conversions, urge drivers to become activated and turn from part time to full time
- Find out what communication is most (text or more personalized calls) effective
- Find out what should the content be and how to build the iterative process
Clustering Analysis basically means breaking up huge data sets into further subsets to help get better insights into critical decision areas. “What happens with clustering/segmentation analysis is that, it is an iterative process, you keep building into the model and keep finding data sets so that you gain smarter and stronger insights,” notes Alluri.
In this case, segmentation was based on hours and trips. Alluri shares how the model was further optimized to include trips and how it led to increased revenue for drivers. “When we started this model initially it was meant as a question analysis and we used hours, that driver partners were putting in on a weekly basis or a daily basis as a variable. But as the model became smarter we wanted to include trips also to ensure that drivers that are driving at night or just part-time at night are not coming online for just 4-5 hours but are able to get trips, the end result is, they are engaged on our platform,” he says.
upGrad’s Exclusive Data Science Webinar for you –
ODE Thought Leadership Presentation
The end result was:
- Helping part-time drivers find trips at night (we don’t want a driver coming online at a wrong time)
- Achieve their running target, thereby meeting revenue generation
- Boosting loyalty, converting from part time to full time (achieving day-time trips as well)
Top 4 Data Analytics Skills You Need to Become an Expert!
SQL Still Triumphs in Data Analytics
“Data warehousing is set in a way that we can do analysis on it, so it is easy for city teams and analysts to go into this data, get what you need to figure out what the biggest problems/issues are in those specific areas and how to go about fixing it,” explains Alluri.
Alluri tells why SQL is preferred in Analytics
- There are no manual mistakes
- Write the query you want, find out what information you need and run the logic in that query
- When you get the file you are ready to share, you can also keep adding analysis on it
- Automate it using either R or Python and gather information sets that are more useful
Visualization at Uber
Visual analytics is used at Uber to make data look more actionable and understandable. In India, one of the tools used by Uber’s city teams is heat maps which are used to find out where exactly is the biggest mismatch between supply and demand. The team uses visualization layers for most business insight applications and uses it to find out the sequence of data flowing in.
How Can You Transition to Data Analytics?
Learn data science courses from the World’s top Universities. Earn Executive PG Programs, Advanced Certificate Programs, or Masters Programs to fast-track your career.
About Sai Alluri:
Sai Alluri holds a degree in Mechanical Engineering from University of Illinois at Urbana-Champaign. He worked in consulting before joining Uber in San Francisco, California. Sai shifted to India last year to set up a team and focus on operational and analytical challenges in India. He is part of the industry professionals team working closely with UpGrad to create a world-class learning experience.
Haven’t had enough? Want to know more about this case-study or various other real-life examples from many other industry leaders who have partnered with UpGrad? Check out the UpGrad-IIIT Bangalore PG Diploma in Data Analytics Program now!
If you are curious to learn about big data, data science, check out IIIT-B & upGrad’s PG Diploma in Data Science which is created for working professionals and offers 10+ case studies & projects, practical hands-on workshops, mentorship with industry experts, 1-on-1 with industry mentors, 400+ hours of learning and job assistance with top firms.
Frequently Asked Questions (FAQs)
1. What is Uber?
Uber is a car-hailing business that originated in San Francisco under the name UberCab. Uber collects information on its drivers. Uber studies their speed and acceleration, as well as examining to see whether they are working for a competitor, in addition to gathering non-identifiable information on their car and location. Uber utilizes personal data to track which elements of the service are most popular, evaluate user trends, and determine where they should offer their services.
2. What is Data Visualization?
Data Visualization is known as the process of converting massive data sets and measurements into charts, graphs, and other graphics. The visual representation of data makes it simpler to locate and address real-time patterns, outliers, and fresh insights regarding the data's content. It provides views on one or more pages or screens to assist you in keeping track of events or activities at a glance. A dashboard presents real-time data by extorting complicated data points from large data sets.
3. What is Data Segmentation?
The act of segmenting data according to your company's demands in order to refine your analyses based on a defined context, utilizing a cross-calculating analysis tool, is referred to as segmentation. The goal of segmentation is to gain a deeper understanding of your visitors as well as actionable data to improve your website or mobile app. A segment, in real words, allows you to select your analysis based on specific elements (single or combined). Segmentation can be performed on components linked to a single visit as well as elements connected to several visits throughout the course of the study period. This segmentation is referred to as 'visitor segmentation' in the latter situation.