- Blog Categories
- Software Development
- Data Science
- AI/ML
- Marketing
- General
- MBA
- Management
- Legal
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- Software Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Explore Skills
- Management Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
Introduction to Markov Chains: Prerequisites, Properties & Applications
Updated on 28 August, 2023
7.28K+ views
• 9 min read
Table of Contents
Has it ever crossed your mind how expert meteorologists make a precise prediction of the weather or how Google ranks different web pages? How they make the fascinating python applications in real world. These calculations are complex and involve several variables that are dynamic and can be solved using probability estimates.
When Google introduced its PageRank algorithm, it revolutionized the web industry. And if you’re familiar with that algorithm, you must also know it uses Markov chains. In our introduction to Markov chains, we’ll briefly examine them and understand what they are. So, let’s get started.
Check out our data science certifications to upskill yourself
Pre-requisites
It’s essential to know a few concepts before we start the introduction to Markov chains. And most of them are from probability theory. Non-mathematically, you can define a random variable’s value as the result of a random event. So, for example, if the variable were the result of rolling a die, it would be a number whereas if it were a result of a coin flip, it would be a boolean (0 or 1). The set of these possible results could be continuous as well as discrete.
So we can say that a stochastic process is a collection of random variables that set indexes. That set represents different time instances. This set could be of real numbers (continuous process) or natural numbers (discrete process).
Read: Built in Data Structures in Python
Introduction to Markov Chains
Markov chains get their name from Andrey Markov, who had brought up this concept for the first time in 1906. Markov chains refer to stochastic processes that contain random variables, and those variables transition from a state to another according to probability rules and assumptions.
What are those probabilistic rules and assumptions, you ask? Those are called Markov Properties. Learn more about Markov Chain in Python Tutorial.
What is the Markov Property?
There are plenty of groups of random processes, such as autoregressive models and Gaussian processes. Markov property makes the study of these random processes quite easier. A Markov property states that we wouldn’t get more information about the future outcomes of a process by increasing our knowledge about its past if we know its value at a particular time.
A more elaborate definition would be: Markov property says that the probability of a stochastic process only depends on its current state and time, and it is independent of the other states it had before. That’s why it’s a memoryless property as it only depends on the present state of the process.
A homogeneous discrete-time Markov chain is a Marko process that has discrete state space and time. We can say that a Markov chain is a discrete series of states, and it possesses the Markov property.
Here’s the mathematical representation of a Markov chain:
X = (Xn)nN=(X0, X1, X2, …)
Properties of Markov Chains
Let’s take a look at the fundamental features of Markov chains to understand them better. We won’t delve too deep on this topic as the purpose of this article is to make you familiar with the general concept of Markov chains.
Reducibility
Markov chains are irreducible. That means they have no reducibility if it can reach any state from another state. The chain doesn’t need to reach one state from another in just a single time step; it can do so in multiple time steps. If we can represent the chain with a graph, then the graph would be firmly connected.
Explore our Data Science Online Certifications
Aperiodic
Let’s say a state’s period is k. If k = 1, then this state is aperiodic when any kind of return to its state requires some multiple of k time-steps. When all states of a Markov chain are aperiodic, then we can say that the Markov chain is aperiodic.
Top Data Science Skills You Should Learn
Transient and Recurrent States
When you leave a state, and there’s a probability that you can’t return to it, we say that the state is transient. On the other hand, if we can return to a state with probability 1, after we have left it, we can say that the property is recurrent.
There are two kinds of recurrent states we can have. The first one is the positive recurrent state with a finite expected return time, and the second one is the null recurrent state with an infinite expected return time. Expected return time refers to the mean recurrence time when we leave the state.
Our learners also read: Learn Python Online for Free
Read our popular Data Science Articles
Higher-order Markov Chains
Higher-order Markov chains are an extension of the standard introduction to Markov chains, where the probability of transitioning from one state to another depends not only on the current state but also on a fixed number of preceding states, in contrast to first-order Markov chains, which only consider the immediately previous state, higher-order Markov chains incorporate a history of states to determine the transition probabilities. This allows for more sophisticated modeling of systems with dependencies that span beyond the immediate past.
Formal Definition
In a higher-order Markov chain, the state of the system at a time *t* depends on the *n* preceding states, denoted as *X(t-1), X(t-2), …, X(t-n)*, where *X(t)* represents the state at a time *t*. The transition probabilities in a higher-order Markov chain are defined as follows:
P(X(t) = x | X(t-1) = x_{t-1}, X(t-2) = x_{t-2}, …, X(t-n) = x_{t-n})
Examples of Higher-order Markov Chains
- Language Modeling: In natural language processing, language models often use higher-order Markov chains to predict the probability of a word based on the context of the preceding *n* words. This enables the generation of more contextually relevant and coherent sentences.
- Weather Prediction: Weather forecasting models can utilize higher-order Markov chains to predict weather conditions based on the historical weather patterns of the past *n* days. This approach can capture longer-term climate dependencies and improve the accuracy of predictions.
Challenges and Considerations
While higher-order Markov chains offer increased modeling capabilities, they also present some challenges:
1. Increased Dimensionality
As the order of the Markov chain (*n*) increases, the number of possible combinations of states in history increases exponentially. This can lead to a significant increase in model complexity and computational requirements.
2. Data Sparsity
In many applications, the higher-order state combinations may not occur frequently in the training data, resulting in sparse observations. This can lead to unreliable estimates of transition probabilities, affecting the model’s performance.
3. Curse of Dimensionality
As the order of the Markov chain increases, the size of the state space grows exponentially. This phenomenon is known as the “curse of dimensionality.” With a larger state space, the amount of data required to estimate transition probabilities accurately becomes impractical, especially when dealing with real-world applications. As the number of possible state combinations grows, the available data may become sparse, making it difficult to build reliable models.
4. Memory Requirements
Higher-order Markov chains require storing and manipulating historical state information. As the order (*n*) increases, the model needs to maintain a more extended history of states, which can lead to increased memory requirements. This becomes particularly challenging when dealing with massive datasets or resource-constrained environments, as retaining and processing such large historical sequences might not be feasible.
5. Model Overfitting
Higher-order Markov chains are susceptible to overfitting, especially when the order (*n*) is large, and the available data is limited. Overfitting occurs when the model captures noise and random variations in the training data rather than learning the underlying patterns.
Methods for Estimation
To address the challenges of higher-order Markov chains, various estimation techniques have been developed:
1. Maximum Likelihood Estimation (MLE)
MLE is commonly used to estimate transition probabilities based on observed data. However, in higher-order Markov chains, the scarcity of certain state combinations can lead to unreliable estimates.
2. Smoothing Techniques
Smoothing methods, such as Laplace smoothing or add-k smoothing, can be applied to alleviate the problem of data sparsity and provide more robust estimates of transition probabilities.
upGrad’s Exclusive Data Science Webinar for you –
How upGrad helps for your Data Science Career?
Applications of Markov Chains
Introduction to Markov chains finds applications in many areas. Here are their prominent applications:
- Google’s PageRank algorithm treats the web like a Markov model. You can say that all the web pages are states, and the links between them are transitions possessing specific probabilities. In other words, we can say that no matter what you’re searching on Google, there’s a finite probability of you ending up on a particular web page.
- If you use Gmail, you must’ve noticed their Auto-fill feature. This feature automatically predicts your sentences to help you write emails quickly. Markov chains help in this sector considerably as they can provide predictions of this sort effectively.
- Have you heard of Reddit? It’s a significant social-media platform that’s filled with subreddits (a name for communities in Reddit) of specific topics. Reddit uses Markov chains and models to simulate subreddits for a better understanding of the same.
Know more: Evolution of Language Modelling in Modern Life
Final Thoughts
It appears we have reached the end of our introduction to Markov chains. We hope you found this article useful. If you have any questions or queries, feel free to share them with us through the comments. We’d love to hear from you.
If you want to learn more about this topic, you should head to our courses section. You’ll find plenty of valuable resources there.
If you are curious to learn about data science, check out IIIT-B & upGrad’s PG Diploma in Data Science which is created for working professionals and offers 10+ case studies & projects, practical hands-on workshops, mentorship with industry experts, 1-on-1 with industry mentors, 400+ hours of learning and job assistance with top firms.
Frequently Asked Questions (FAQs)
1. Is there any real life application of Markov Chains?
One of the most essential tests for dealing with separate trial procedures is the Markov chain. In finance and economics, Markov chains are used to represent a variety of events, such as market crashes and asset values. Markov chains are applied in a wide range of academic areas, including biology, economics, and even real-world scenarios. Parking lots have a set number of spots available, but how many are available at any one moment may be characterized using a Markov model based on a combination of numerous factors or variables. Markov chains are frequently used to create dummy texts, lengthy articles, and speeches.
2. What does the term equilibrium mean with respect to Markov Chains?
The distribution πT is said to be an equilibrium distribution If πT P = πT. Equilibrium refers to a situation where the distribution of Xt does not change as we progress through the Markov chain. In fact, the distinguishing feature of a Markov chain is that the potential future states are fixed, regardless of how the process got to its current state. In other words, the likelihood of transitioning to any given condition is completely determined by the present state and the amount of time that has passed.
3. Are Markov Chains time homogenous?
If the transition probability between two given state values at any two times relies only on the difference between those times, the process is time homogenous. There are conditions for a Markov chain to be homogeneous or non-homogeneous. The transition probabilities of a Markov chain are said to be homogenous if and only if they are independent of time. The Markov property is retained in non-homogeneous Markov chains (nhmc), although the transition probabilities may vary with time. This section lays forth the criteria that guarantee the presence of a variation limit in such chains, with the goal of applying them to simulated annealing.