- Blog Categories
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Gini Index for Decision Trees
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Brand Manager Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Search Engine Optimization
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
Introduction to Multivariate Regression in Machine Learning: Complete Guide
Updated on 03 October, 2022
15.68K+ views
• 8 min read
Table of Contents
- What is Regression Analysis?
- What is Multivariate Regression?
- Cost Function in Multivariate Regression
- How to use Multivariate Regression Analysis?
- Assumptions in the Multivariate Regression Model
- Assumptions in Multivariate Logistic Regression Model
- Advantages of Multivariate Regression
- Disadvantages of Multivariate Regression
It’s no secret that today’s technology is data-driven. Data may only be a compilation of figures but it can be processed meaningfully to extract productivity and resourcefulness for businesses to remain competitive and sustainable in the long term. As it happens, data analysis is the answer to deriving accurate estimations from raw information.
Data Analysis is a technique that involves statistical and logical ideas to scrutinize, process, and transform data into a usable form. The solutions that are drawn by data analysis are used in businesses to make vital decisions. Data science along with data analysis is used to predict future outcomes with high accuracy. It is a process of employing scientific techniques, and algorithms to procure viable information from a pool of data.
A common problem faced by data professionals is the manner in which to determine if a statistical relationship exists between a response variable (denoted by Y) and explanatory variables (denoted by Xi).
The answer to this concern is regression analysis. Let’s understand this in further detail.
What is Regression Analysis?
Regression analysis is one of the popular methods in data analysis that follows a controlled or supervised machine learning algorithm. It is an effective technique to identify and establish a relationship among variables in data.
Regression analysis involves sorting out viable variables using mathematical strategies to draw highly accurate conclusions about those sorted variables.
What is Multivariate Regression?
Multivariate is a controlled or supervised Machine Learning algorithm that analyses multiple data variables. It is a continuation of multiple regression that involves one dependent variable and many independent variables. The output is predicted based on the number of independent variables.
Multivariate regression figures out a formula that explains the simultaneous response of the factors present in variables to the changes in others. They are used to study the data in various fields. For instance, in real estate multivariate regression is used to predict the price of a house based on several factors like its location, number of rooms, and the available amenities.
Cost Function in Multivariate Regression
The cost function allocates a cost to samples when the outcome of a model deviates from the observed data. The equation of cost function is the total of the square of the difference between the predicted value and the actual value divided by two times the length of the dataset.
Here’s an example:
How to use Multivariate Regression Analysis?
The processes involved in multivariate regression analysis include the selection of features, engineering the features, feature normalization, selection loss functions, hypothesis analysis, and creating a regression model.
- Selection of features: It is the most important step in multivariate regression. Also known as variable selection, this process involves selecting viable variables to build efficient models.
- Feature Normalizing: This involves feature scaling to maintain streamlined distribution and data ratios. This helps in better data analysis. The value of all the features can be changed according to the requirement.
- Selecting Loss function and hypothesis: The loss function is used for predicting errors. The loss function comes into play when the hypothesis prediction changes from the actual figures. Here, the hypothesis represents the value predicted from the feature or variable.
- Fixing hypothesis parameter: The parameter of the hypothesis is fixed or set in such a way that it minimizes the loss function and enhances better prediction.
- Reducing the loss function: The loss function is minimized by generating an algorithm specifically for loss minimization on the dataset which in turn facilitates the alteration of hypothesis parameters. Gradient descent is the most commonly used algorithm for loss minimization. The algorithm can also be used for other actions once the loss minimization is complete.
- Analyzing the hypothesis function: The function of the hypothesis needs to be analyzed as it is crucial for predicting the values. After the function is analyzed, it is then tested on test data.
Let us now look at the two ways multivariate regression can be used.
1. Multivariate Linear Regression
Multivariate linear regression resembles simple linear regression except that in multivariate linear regression, multiple independent variables contribute to the dependent variables and so multiple coefficients are used in the computation.
- It is used to derive a mathematical relationship amongst multiple random variables. It explains how many multiple independent variables are associated with one dependent variable.
- The details of the multiple independent variables are used to make an accurate prediction of the influence they have on the outcome variable.
- Multivariate linear regression model generates a relationship in a linear form (a form of a straight line) with the best approximation of each data point.
- The equation of the Multivariate linear regression model is:
yi=β0+β1xi1+β2xi2+…+βpxip+
where for i=n observations:
When can linear regression be used?
The linear regression model can be used only when there are two continuous variables of which one is dependent and the other one is independent.
The independent variable is used as a parameter to determine the value or outcome of the dependent variable.
2. Multivariate Logistic Regression
Logistic regression is an algorithm used to predict a binary outcome based on multiple independent variables. A binary outcome has two possibilities, either the scenario happens( represented by 1) or it doesn’t happen ( denoted by 0).
Logistic regression is used while working on binary data, the data where the outcome (or the dependent variable) is dichotomous.
Where can logistic regression be used?
Logistic regression is primarily used to deal with classification issues. For instance, to ascertain if an email is spam or not and if a particular transaction is malicious or not. In data analysis, it is used to make calculated decisions to minimize loss and increase profits.
Multivariate logistic regression is used when there is one dependent variable and multiple outcomes. It differs from logistic regression by having more than two possible outcomes.
X1 to Xp are distinct independent variables.
b0 to bp are the regression coefficients
The multiple logistic regression model can also be written in a different form. In the form below, the outcome is the expected log of the odds that the outcome is present,
The multiple logistic regression model can also be written in a different form. In the form below, the outcome is the expected log of the odds that the outcome is present.
The right side of the above equation resembles the linear regression equation but the method of finding out the regression coefficients differs.
Assumptions in the Multivariate Regression Model
- The dependent and the independent variables have a linear relationship.
- The independent variables do not have a strong correlation among themselves.
- The observations of yi are chosen randomly and individually from the population.
Assumptions in Multivariate Logistic Regression Model
- The dependent variable is nominal or ordinal. The nominal variables have two or more categories without any meaningful organization. Ordinal variables can also have two or more categories, but they have a structure and can be ranked.
- There can be single or multiple independent variables that can be ordinal, continuous, or nominal. Continuous variables are those that can have infinite values within a specific range.
- The dependent variables are mutually exclusive and exhaustive.
- The independent variables do not have a strong correlation among themselves.
Advantages of Multivariate Regression
- Multivariate regression helps us to study the relationships among multiple variables in the dataset.
- The correlation between dependent and independent variables helps in predicting the outcome.
- It is one of the most convenient and popular algorithms used in machine learning.
Disadvantages of Multivariate Regression
- The complexity of multivariate techniques requires complex mathematical calculations.
- It is not easy to interpret the output of the multivariate regression model since there are inconsistencies in the loss and error outputs.
- Multivariate regression models cannot be applied to smaller datasets; they are designed for producing accurate outputs when it comes to larger datasets.
If you would like to learn more about multivariate regression and other complex data science subjects, upGrad has just the solution for you. Our 18-months Master of Science in Data Science course from Liverpool John Moores University covers 500+ rigorous learning hours, 25 coaching sessions (held on a 1:8 basis), and 20+ live sessions. upGrad also offers 1:1 teaching assistance and 360° career guidance support for students to transform their careers. Learners can leverage peer-to-peer learning on the global platform with over 40,000 paid learners, and work on collaborative projects across six functional specializations to maximize their learning experience.
Frequently Asked Questions (FAQs)
1. What is a multivariate regression model?
Multivariable regression models are machine learning algorithms designed to determine the statistical relationship between one dependent variable and multiple independent variables.
2. What is the use of multivariate regression?
Multivariate regression models find ample use in research studies for more efficient analysis of data. They are usually applied where there are multiple independent variables or features present.
3. Which are the two most common multivariate analysis methods?
The two main multivariate analysis methods are common factor analysis and principal component analysis.