- Blog Categories
- Software Development
- Data Science
- AI/ML
- Marketing
- General
- MBA
- Management
- Legal
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- Software Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Explore Skills
- Management Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
K Means Clustering in R: Step by Step Tutorial with Example
Updated on 24 November, 2022
8.8K+ views
• 10 min read
Table of Contents
As a data scientist, you’ll be doing a lot of clustering. There are many types of clustering algorithms available, and you should be well-versed in using all of them. In this article, we’ll discuss a popular clustering algorithm, K-means, and see how it’s used in R.
You’ll find out the basic theory behind K-means clustering in R and how it’s used. We’ve also discussed a practical example later in the article. Be sure to bookmark this article for future reference. Read more about clustering analysis in Data Mining.
Before we begin discussing K means clustering in R, we should take a look at the types of clustering algorithms that are present so you can better understand how this algorithm deals with them.
Read: Top R Libraries in Data Science
Types of Clustering
When you group several objects in such a way that the objects which are the most similar to each other are in a close cluster, it’s called clustering. The distance between the objects could be relevant to their similarity. Similarity shows the strength of the relationship between two distinct objects in data science. Clustering is a popular data mining technique. Clustering finds its applications in numerous industries and areas, including image analysis, machine learning, data compression, pattern recognition, and many others.
Clustering is of two types – Hard and Soft. Let’s discuss each of them briefly.
- In a hard cluster, a data point would belong to a cluster totally, or it wouldn’t belong to it at all. There’s no in-between.
- In a soft cluster, a data object could be related to more than one cluster at once due to some likelihood or probability.
Learn data science course online from the World’s top Universities. Earn Executive PG Programs, Advanced Certificate Programs, or Masters Programs to fast-track your career.
Types of Clustering Algorithms
Like there are different types of clusters, there are different types of clustering algorithms too. You can differentiate algorithms based on their cluster model. This means you can distinguish them based on how they form clusters. If we’d start talking about all kinds of clustering algorithms, this guide will become too long and far from the main point. So, we’ll only discuss a few prominent types of clustering algorithms. There is connectivity- based, centroid based, density-based, and distribution based clustering algorithms.
Basic Concept of K-Means
The basic concept of K-means is quite simple. K-means is related to defining the clusters so that the total within-cluster variation is as minimum as possible. There are a variety of k-means algorithms. The most common k-means algorithm is the Hartigan-Wong algorithm, which states that the total intra-cluster variation is equal to the sum of the squared distances Euclidean distances between centroids and their items:
W(Ck)=xiCk(xi–k)2
Here xi refers to a data point that belongs to the cluster Ck and k refers to the mean value of the data points present in the cluster Ck.
The value of xi should be such that the sum of the squared distance between xi and k is the minimum.
Explore our Popular Data Science Certifications
What is the K-means Algorithm?
To use the algorithm, we’ll first have to state the number of clusters, K, that will be present in our result. The algorithm first selects K objects randomly to act as initial cluster centers. We call those objects cluster centroids or means. Then we assign the remaining objects to their closest centroids. The Euclidean distance between the cluster centroids and the objects determines how close they are.
After we have assigned the objects to their respective centroids, the algorithm calculates the mean value of the clusters. After this re-computation, we recheck the observations to see if they might be closer to a different cluster. Then, we reassign the objects to centroids accordingly. We keep repeating these steps until assigning clusters stops. This means we stop repeating the iterations when the clusters formed in an iteration are the same as the ones in their previous iteration.
Our learners also read: Learn Python Online for Free
Read our popular Data Science Articles
Using K-Means Clustering (Example)
Now that you know what is the K-means algorithm in R and how it works let’s discuss an example for better clarification. In this example, we’ll cluster the customers of an organization by using the database of wholesale customers. The data for this problem is available at the machine learning repository of Berkley UCI. You can check it out here.
First, we’ll read the data. And then get a summary of it. After reading the data and seeing its summary, you’ll see that there are some stark differences between the top consumers in different categories. You’ll find some outliers, which you can’t remove easily with normalization (or scaling). With this data, a business would want to see what their mid-range of customers buy most of the time. That’s because a company would have a decent idea of what their top customers buy.
To create a cluster of the mid-level customers, we should first get rid of the top layer of customers from each category. So we’ll remove the top 5 ones and create a new set. Here’s how we’ll do so:
Top Data Science Skills to Learn to upskill
SL. No | Top Data Science Skills to Learn | |
1 |
Data Analysis Online Courses | Inferential Statistics Online Courses |
2 |
Hypothesis Testing Online Courses | Logistic Regression Online Courses |
3 |
Linear Regression Courses | Linear Algebra for Analysis Online Courses |
top.n.custs <- function (data,cols,n=5) { #Requires some data frame and the top N to remove
idx.to.remove <-integer(0) #Initialize a vector to hold customers being removed
for (c in cols){ # For every column in the data we passed to this function
col.order <-order(data[,c],decreasing=T) #Sort column “c” in descending order (bigger on top)
#Order returns the sorted index (e.g. row 15, 3, 7, 1, …) rather than the actual values sorted.
idx <-head(col.order, n) #Take the first n of the sorted column C to
idx.to.remove <-union(idx.to.remove,idx) #Combine and de-duplicate the row ids that need to be removed
}
return(idx.to.remove) #Return the indexes of customers to be removed
}
top.custs <-top.n.custs(data,cols=3:8,n=5)
length(top.custs) #How Many Customers are needed to be Removed?
data[top.custs,] #Examine the available customers
data.rm.top<-data[-c(top.custs),] #Remove the required Customers
With this new file, we can start working on our cluster analysis. To perform the cluster analysis, we’ll use the following code:
set.seed(76964057) #Set the seed for reproducibility
k <-kmeans(data.rm.top[,-c(1,2)], centers=5) #Create 5 clusters, Remove columns 1 and 2
k$centers #Display cluster centers
table(k$cluster) #Give the count of data points in each cluster
When you have run this code on the given database, you’ll get these results:
- The first cluster would have high-quality detergents but the low quantity of fresh food products
- The third cluster would have more fresh product
You’ll need to use withinss and betweenss for a detailed interpretation of the results. k$withinss is equal to the sum of the distance’s square between each data object from the center of the cluster. The lower the range, the better would be the result. If the withinss measure is high in your data, it means there are many outliers present, and you need to perform data cleaning. k$betweenss is the sum of the distance’s square between different centers of the clusters. The distance between the cluster centers should be as high as possible.
Read: 6 More commonly used data structures in R
You should take help of trial and error to get the most accurate results. To do so, you’ll need to try out various values for K. When the graph of your results doesn’t show increment in the withinss of your clusters, that point would be the most suitable value for K. You can find the value of K through the following code:
rng<-2:20 #K from 2 to 20
tries <-100 #Run the K Means algorithm 100 times
avg.totw.ss <-integer(length(rng)) #Set up an empty vector to hold all of points
for(v in rng){ # For each value of the range variable
v.totw.ss <-integer(tries) #Set up an empty vector to hold the 100 tries
for(i in 1:tries){
k.temp <-kmeans(data.rm.top,centers=v) #Run kmeans
v.totw.ss[i] <-k.temp$tot.withinss#Store the total withinss
}
avg.totw.ss[v-1] <-mean(v.totw.ss) #Average the 100 total withinss
}
plot(rng,avg.totw.ss,type=”b”, main=”Total Within SS by Various K”,
ylab=”Average Total Within Sum of Squares”,
xlab=”Value of K”)
That’s it. Now you can use the graph you get from this code to get the best value for K and use it to get the required results. Use this example to try out your knowledge of K-means clustering in R. Here is all the code we’ve used in the example:
data <-read.csv(“Wholesale customers data.csv”,header=T)
summary(data)
top.n.custs <- function (data,cols,n=5) { #Requires some data frame and the top N to remove
idx.to.remove <-integer(0) #Initialize a vector to hold customers being removed
for (c in cols){ # For every column in the data we passed to this function
col.order <-order(data[,c],decreasing=T) #Sort column “c” in descending order (bigger on top)
#Order returns the sorted index (e.g. row 15, 3, 7, 1, …) rather than the actual values sorted.
idx <-head(col.order, n) #Take the first n of the sorted column C to
idx.to.remove <-union(idx.to.remove,idx) #Combine and de-duplicate the row ids that need to be removed
}
return(idx.to.remove) #Return the indexes of customers to be removed
}
top.custs <-top.n.custs(data,cols=3:8,n=5)
length(top.custs) #How Many Customers to be Removed?
data[top.custs,] #Examine the customers
data.rm.top <-data[-c(top.custs),] #Remove the Customers
set.seed(76964057) #Set the seed for reproducibility
k <-kmeans(data.rm.top[,-c(1,2)], centers=5) #Create 5 clusters, Remove columns 1 and 2
k$centers #Display cluster centers
table(k$cluster) #Give a count of data points in each cluster
rng<-2:20 #K from 2 to 20
tries<-100 #Run the K Means algorithm 100 times
avg.totw.ss<-integer(length(rng)) #Set up an empty vector to hold all of points
for(v in rng){ # For each value of the range variable
v.totw.ss<-integer(tries) #Set up an empty vector to hold the 100 tries
for(i in 1:tries){
k.temp<-kmeans(data.rm.top,centers=v) #Run kmeans
v.totw.ss[i]<-k.temp$tot.withinss#Store the total withinss
}
avg.totw.ss[v-1]<-mean(v.totw.ss) #Average the 100 total withinss
}
plot(rng,avg.totw.ss,type=”b”, main=”Total Within SS by Various K”,
ylab=”Average Total Within Sum of Squares”,
xlab=”Value of K”)
upGrad’s Exclusive Data Science Webinar for you –
Watch our Webinar on The Future of Consumer Data in an Open Data Economy
Conclusion
We hope you liked this guide. We’ve tried to keep it concise and comprehensive. If you have any questions about the K-means algorithm, feel free to ask us. We’d love to answer your queries.
If you are curious to learn about data science, check out IIIT-B & upGrad’s Executive PG Program in Data Science which is created for working professionals and offers 10+ case studies & projects, practical hands-on workshops, mentorship with industry experts, 1-on-1 with industry mentors, 400+ hours of learning and job assistance with top firms.
Frequently Asked Questions (FAQs)
1. What are some of the disadvantages of using K-means?
Outliers can pull centroids, or outliers may be given their own cluster rather than being disregarded. As K-means is stochastic, it cannot ensure that the global optimal clustering solution will be found. In reality, outliers and noisy data might make the algorithm highly sensitive. Before grouping, consider eliminating or cutting outliers. When grouping data with variable sizes and densities, K-means has difficulties. You must generalize K-means to cluster such data. Even if they clearly belong to the same cluster, the k-means algorithm does not allow data points that are far apart to share the same cluster.
2. What is the elbow method in K-means?
The k-means method relies heavily on finding the appropriate number of clusters. The Elbow Approach is a widely used method for determining the best K value. The elbow technique performs K-means clustering on the dataset for a range of K values on the graph, and then computes an average score for all clusters for each value of K. The distortion score, which is the sum of square distances from each point to its assigned center, is computed by default. Other data-driven models, such as the number of main components to characterize a data set, can utilize the same technique to determine the number of parameters.
3. How can we find outliers in K-means?
Outliers in K-Means clustering may be discovered using both a distance-based and a cluster-based technique. Outliers are discovered using dendrograms in the case of hierarchical clustering. The project's objective is to discover and eliminate outliers in order to make clustering more accurate. The data is partitioned into K groups by allocating them to the nearest cluster centers in the K-means based outlier identification approach. We may then calculate the distance or dissimilarity between each item and its cluster center, and choose the outliers with the greatest distances. Because extreme values may quickly impact a mean, the K-means clustering method is sensitive to outliers.