- Blog Categories
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Gini Index for Decision Trees
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Brand Manager Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Search Engine Optimization
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
K Means Clustering Matlab [With Source Code]
Updated on 23 September, 2022
9.52K+ views
• 9 min read
K-means clustering is one of the most commonly used techniques by data professionals. Due to the algorithm’s efficacy, it is demanded by numerous industries in various applications.
Top Machine Learning and AI Courses Online
A data scientist’s job requires the implementation of Clustering in many stages. Many large-scale projects are currently based upon the clustering algorithm and have drastically raised the bar for the demand of data science professionals.
One of those algorithms is the K-means clustering, which is the basic idea of this article and its implementation with the MATLAB source code.
Before getting the topic’s hold, let’s have a quick look at what Clustering is, its significance, and how it can be implemented in real life. By the end of the post, you will come to know how crucial this algorithm is for understanding data in large sets.
Trending Machine Learning Skills
Enrol for the Machine Learning Course from the World’s top Universities. Earn Masters, Executive PGP, or Advanced Certificate Programs to fast-track your career.
What is Clustering?
Data is the most critical component for any application, and a cluster is nothing but an accumulation of similar data points combined. As the name clearly defines, Clustering is the process of dividing a large chunk of data into subgroups or only clusters based on the data pattern.
In machine learning, Clustering is applied when there is no predefined data available. The ultimate aim is to group data into classes with high Intra-class similarity.
Clustering is used to explore data. Some real-life examples where it can be used are in market segmentation to find customers with similar behaviours, image segmentation/compression, document clustering with multiple topics, etc.
It is a requisite step before processing data to identify homogeneous groups for building supervised models. K-Means clustering is an unsupervised learning algorithm as we have to look for data to integrate similar observations and form distinct groups.
Let’s take a look at the K-Means algorithm, which is one of the most applied and the simplest clustering algorithms.
K-Means Clustering
K-means clustering is one of the most desired unsupervised machine learning algorithms.
Unsupervised algorithms make conclusions from datasets using input vectors without referring to labelled outcomes.
It is an iterative distance-based or centroid-based algorithm that segregates the dataset into K distinct subgroups (clusters) where each data point belongs to one group. The similarity of the intra-cluster data points is increased, and the distance between the clusters is kept optimum.
The distance between the data points and the centroid of the cluster is kept at a minimum, such as Euclidean distance. In K-Means, each cluster is linked to a centroid. The primary aim is to minimise the distances between the points and the respective cluster centroid.
FYI: Free nlp course!
How K-Means Clustering Works?
As the clustering process means several iterations to be performed, the K-Means algorithm has a unique way of working. Here is a step-by-step explanation of the way it works:
Step 1: Initially, define the number of clusters ‘K’.
Step 2: Initialise random K data points as centroids for each cluster.
If there are 2 clusters, the value of ‘K’ will be 2.
Step 3: Perform several iterations until the assigned data points to clusters do not change.
Step 4: Calculate the sum of the squared distance between data points and the centroids.
Step 5: Allocate each data point to the closest cluster (centroid) to minimise the distance.
Step 6: Take an average of the centroids of the clusters belonging to each other.
This is a single iteration process performed for computing the centroid and assigning the points to the cluster based on their distance from the centroid. Once all the centroids are defined, the process is stopped.
An Illustrative Example Depicting the Implementation of K-Means Clustering
Statement: One of the famous food chains, McDonald’s wants to open a chain of outlets across California and want to find out the locations that will fetch them maximum revenue.
What McDonald’s already Has?
Ø A strong e-commerce presence
Ø Online customer data for analysing locations from where the orders are made frequently
Possible challenges they could face
- Analyzing the areas from where the orders are made frequently.
- Comprehend how many outlets to be opened in the area
- Figure out the locations for the outlets within all areas to keep a minimum distance between the store and delivery points.
All these points need a lot of analysis and mathematics to work on.
How can the K-means Clustering Method be used here?
With a predefined value of K, the K-means algorithm can be implemented in the following steps:
- Identifying the store locations with K Partition of objects into K non-empty subsets.
- Determining the cluster centroids of the partition.
- Assigning each location to a specific cluster.
- Calculating the distances from each location and allocate points to the cluster where the distance is minimum with the outlet.
- After one iteration, re-allotting the points, find the centroid of the new cluster formed.
Likewise, the K-Means Clustering algorithm can be applied to a variety of applications in varied scales. The hospitality industry, crime investigation departments, and image resizing, to name a few.
K-Means algorithm is implemented using many languages such as R, Python, MATLAB, etc. In the next section, we will look at how K-Means Clustering MATLAB is applied.
Read: Types of Functions in Matlab
K-Means Algorithm Using MATLAB
K-Means is a largely used algorithm used by many professionals dealing with data science, machine learning, artificial intelligence, cryptography, and cybersecurity.
The core objective of using this algorithm is to find out the centroid of each cluster. The data given to a programmer is heterogeneous. Here is the MATLAB code for plotting the centroid of each cluster and assign the coordinates of each centroid:
Clustering MATLAB
Code:
rng default; % For reproducibility
X = [randn(100,2)*0.75+ones(100,2);
randn(100,2)*0.5-ones(100,2)];
opts=statset(‘Display’,’final’);
[idx,C]=kmeans(X,4,’Distance’,’cityblock’,’Replicates’,5,’Options’,opts);
plot(X(idx==1,1),X(idx==1,2),’r.’,’MarkerSize’,12);
hold on;
plot(X(idx==2,1),X(idx==2,2),’b.’,’MarkerSize’,12);
plot(X(idx==3,1),X(idx==3,2),’g.’,’MarkerSize’,12);
plot(X(idx==4,1),X(idx==4,2),’y.’,’MarkerSize’,12);
plot(C(:,1),C(:,2),’Kx’,’MarkerSize’,15,’LineWidth’,3);
legend(‘Cluster 1′,’Cluster 2′,’Cluster 3′,’Cluster 4′,’Centroids’, ‘Location’,’NW’);
title(‘Cluster Assignments and centroids’);
hold off;
for i=1:size(C, 1)
display([‘Centroid ‘, num2str(i), ‘: X1 = ‘, num2str(C(i, 1)), ‘; X2 = ‘, num2str(C(i, 2))]);
end
Output:
MATLAB Window Showing Four Clusters and Respective Centroids
Results:
The centroids obtained are as follows:
- The value of X1 & X2 for Centroid 1: 1.3661; 1.7232
- The value of X1 & X2 for Centroid 2: -1.015; -1.053
- The value of X1 & X2 for Centroid 3: 1.6565; 0.36376
- The value of X1 & X2 for Centroid 4: 0.35134; 0.85358
Some business areas where K-Means clustering can be implemented
K-means clustering is a versatile algorithm and can be used for many business use cases for any type of grouping. Some examples are:
Ø Behavioral Segregation:
- Division using purchase history
- Division using application, website, or platform activities
- Identify customers’ image based on their interests
- Profile creation with monitoring activities
Ø Image Scaling
- Image compression using Python
Ø Sensor measurements:
- Detect motion sensors activity types
- Group images
- Divide audio
- Spot health monitoring groups
Ø Determine bots or anomalies:
- Separate activity groups from bots
- Make a group of valid activities to clean up outlier detection
Ø Inventory classification:
- Make inventory groups by sales activity
- Make inventory groups by manufacturing metrics
Must Read: MATLAB Data Types
Advantages of K-Means Clustering
There’s a reason why top professionals prefer the K-Means clustering algorithm. Some benefits it offers:
- It is a fast, robust, and easier to understand the algorithm.
- The end-efficiency is relatively high
- Offers phenomenal results when data sets are different from each other. For higher variables values, K-Means works comparatively quicker
- The clusters produced with K-Means are relatively tighter than other clustering methods.
Popular AI and ML Blogs & Free Courses
Conclusion
K-means clustering is a broadly used approach for analysing data clusters. Once you gain command, it is easier to understand and apply and deliver results quickly.
We hope with this article; we could introduce you to this analysis technique. For any queries regarding the K-means algorithm, feel free to comment below.
Further, if this field of study interests you, have a look at our PG Diploma in Machine Learning and AI program which is specially curated for working professionals offering 30+ case studies & assignments, 25+ mentorship sessions from industry experts, 10 Practical Hands-on Capstone Projects, 450+ hours of learning and placement assistance.
Frequently Asked Questions (FAQs)
1. What is K Means clustering in machine learning?
This is a popular clustering algorithm used in unsupervised machine learning. K Means algorithm works on the principle of identification of K centroids randomly. From the next step, the algorithm tries to maximize the overall within cluster distance and also minimize the overall between cluster distance. K Means algorithm is an iterative approach. In each iteration, it selects the K Means from the current set of centroids. The algorithm then assigns each observation to the closest K Mean. The distance between two clusters is computed based on the distance between the two closest observations. The Centroid of a cluster is defined as the average of all the observations in the cluster.
2. What are the limitations of the K Means clustering algorithm?
There are some limitations of K Means that you will want to keep in mind when using it. K Means is not robust to outliers. The K Means algorithm only works well when all of your data points are approximately the same distance from the centroid. If some of your data points are far away from the centroid, this will bias the assignment of other data points to clusters. K Means does not guarantee a unique solution. If you have more than one cluster of points, there is no guarantee that K Means will return the same number of clusters each time the algorithm is run. K Means converges slowly. The algorithm converges very slowly, even on small datasets.
3. What are the advantages of K Means clustering?
It is effective for both single and multiple dimensions. It is applicable in both two and three dimensions. It is particularly useful in situations where there are many clusters. The clusters are obtained at the mid-point of the data points. A mean value is calculated for each cluster. Each point is divided by the standard deviation and then it is compared to the mean value. The mean value and the standard deviation are calculated for all clusters and points.
RELATED PROGRAMS