- Blog Categories
- Software Development
- Data Science
- AI/ML
- Marketing
- General
- MBA
- Management
- Legal
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- Software Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Explore Skills
- Management Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
Learn Data Science – An Ultimate Guide to become Data Scientist
Updated on 24 November, 2022
5.57K+ views
• 10 min read
The emergence of Big Data has given birth to one of the most lucrative careers of the 21st century – the Data Scientist. The term ‘Data Scientist’ has been making headlines for quite some time now.
In fact, Data Scientist is one amongst the top 3 job positions on LinkedIn.
The above fact speaks volume to strengthen the fact that professionals from various backgrounds – Mathematics, Computers, Management, Statistics – are looking to make the most out of this opportunity.
But as with everything that gets thrown around a lot, the term ‘Data Science’, and therefore the job of a Data Scientist, has become largely vague. So, before we talk about the topic at hand, let’s look at what is it that a Data Scientist does.
What does a Data Scientist do
In simple words, a Data Scientist is an expert professional who deals extensively with Big Data. Data Scientists use a combination of Machine Learning, Artificial Intelligence, Statistics, and analytical tools to extract meaningful information from massive datasets. Unlike before, when datasets were mostly structured, the data at our disposal today is largely unstructured. So, naturally, Data Scientists spend a significant amount of their time in gathering, cleaning, and munging the data to enable its analysis and interpretation.
Check out our data science certifications to upskill yourself
The job role of a Data Scientist involves an amalgamation of mathematical, statistical, analytical, and programming skills. On any typical working day, a Data Scientist dons on many diverse roles throughout the entire course of the day – from being a Software Engineer and Data Miner to a Data Analyst and Troubleshooter, a Data Scientist also acts as the vital communication link between the IT and the business domains of a data-driven enterprise. It is Data Scientists who help Business Analysts to use the interpreted data in ways that can optimize business benefits.
To be precise, Data Scientists help companies manage and interpret data to solve complex business problems.
If you can picture yourself dealing with Big Data and performing such varied duties in the future, the job of a Data Scientist is your professional calling! However, to become a Data Scientist, you must first acquire the essential skills that are intrinsic to this profession.
Like we mentioned before, Data Science demands specific skills. Thus, to become a Data Scientist, you must bear the following set of skills:
1.Flair in programming
To become a Data Scientist, the first rule is to have an impeccable knack for programming. So, you’ll have to have a solid knowledge of both statistical programming languages like Python or R or Java, and database querying languages like SQL, CQL, and so on. Companies, too, look for applicants who have command over at least two or more than two programming languages.
2. Knowledge of Multivariable Calculus & Linear Algebra
You may wonder why would a Data Scientist need to master Multivariable Calculus & Linear Algebra. It’s simply because having a solid understanding of Multivariable Calculus & Linear Algebra is immensely beneficial for data-driven organisations where even a minor alteration/improvement in algorithm optimization can deliver groundbreaking business opportunities.
Explore our Data Science Online Certifications
3. Familiarity with the basics of Statistics
A big part of the job of a Data Scientist requires dealing in Statistics. Every aspiring Data Scientist must have in-depth knowledge about statistical concepts like Descriptive Statistics (mean, median, range, standard deviation, etc.), Probability Theory, Bayes Theorem, Exploratory Data Analysis, Percentiles and Outliers, Random Variables, Cumulative Distribution Function (CDF), to name a few. The better you understand these concepts, the better you’ll be able to predict the validity of statistical approaches.
4. An understanding of Artificial Intelligence (AI) and Machine Learning (ML)
AI and ML ate two integral parts of Data Science, and hence, proficiency in these is a must. Surprisingly enough, not many Data Scientists are well-versed in AI and ML concepts and techniques. So, if you wish to stay ahead of the competitive curve, you better brush up on AI and ML concepts including Supervised ML, Unsupervised ML, Reinforcement Learning, Natural Language Processing (NLP), Recommendation engines, Outlier detection, and Survival analysis, among other things. Also, if you are proficient with ML techniques like decision trees, logistic regression, k means clustering, Naïve Bayes classifier algorithm, etc., you can solve a host of Data Science problems.
Top Data Science Skills You Should Learn
Our learners also read: Learn Python Online for Free
5. Interests in Data Wrangling
Data Scientists often deal with large, unstructured/semi-structured datasets that only keeps on increasing by the minute. As a result, they have to put a lot of effort into organising and cleaning the messy and complex datasets to enable easy analysis and interpretation. This process is known as Data Wrangling. What Data Scientists do is that they manually convert or map data from one raw format into another more convenient format, so that it becomes easy to keep the data organized and appropriate for interpretation and analysis. Therefore, as an aspiring Data Scientist, you must know how to deal with imperfections and glitches in data.
Read our popular Data Science Articles
upGrad’s Exclusive Data Science Webinar for you –
ODE Thought Leadership Presentation
6. Knowledge of Data Visualization
For professionals handling the business side of a company, it is difficult to make sense of raw data. This is where Data Scientists act as a crucial link between the IT and the business wings. After analysing and interpreting the data, Data Scientists visualize the data with the help of data visualization tools like Tableau, Matplottlib, ggplot, and d3.js. Further, they communicate their findings to both technical and non-technical staff for their ease of understanding. With the visual representation of data, it becomes easier for the non-technical members to understand how they can use the data insights to optimize business operations and stay a step ahead of their rival companies.
7. Sense of Data Intuition
Apart from being an extremely handy day-to-day tool for Data Scientists, Data Intuition is also a crucial part of job interviews. During interviews, employers will put all your abilities to test, including your intuitive ability to understand concepts related to Data Science. This is what we call ‘Data Intuition.” While it is true that you need to have strong mathematical, statistical, and visualization skills, you also should be able to determine what methods and techniques to use to solve a specific problem, what tools to use, and so on.
Now that you know what skills you need to acquire to become a Data Scientist let’s look at the steps that will get you there!
Data Scientists: Myths vs. Realities
How to be a Data Scientist – The learning path
The path to becoming a Data Scientist is pretty straightforward. It starts from the start. Let’s walk you through it!
- Beginning it all.
The first step involves understanding what Data Science is all about. Apart from learning all the basic concepts of Data Science, this is the stage where you make a choice of your first programming language and perfect it. The first few months will involve coding in the language of your choice. Once you are adept at coding in a particular language, learning other programming languages will become way more comfortable.
- Learning the basics of Mathematics and Statistics.
Mathematics and Statistics make up the foundation for ML algorithms. Naturally, you’ll have to learn the basic concepts of Maths and Stats such as Mean, Median, Mode, Variance, Conditional Probability, Hypothesis Testing, Linear Algebra, Calculus, Descriptive Statistics, and Inferential Statistics, among other things.
- Learning ML concepts and their applications
After mastering Maths and Stats concepts, it is time to move on to a more advanced area – Machine Learning. ML algorithms have found application in numerous real-world scenarios – from fraud detection and recommendation engines to sentiment analysis of customer feedback. Apart from the concepts mentioned before, you’ll also have to learn about Deep Learning, Artificial Neural Networks, Inductive Learning, etc. Gradually, as you get a hold of these ML concepts, you’ll have to experiment with them in real-world models through various validation strategies.
- Introduction to Deep Learning
A subset of ML, Deep Learning, deals in algorithms that draw inspiration from the structure and function of brain-like artificial neural networks. These artificial neural nets imitate the functioning of the human brain. Deep learning models have at least three layers in which each layer receives information from the previous layer and passes it on to the next one. You must fully understand the functioning of Deep Learning, and to understand it, you’ll have to be well-versed in Linear and Logistics Regression.
- Deep Learning Architectures
After getting the hang of Deep Learning, you must dive in to learn about advanced Deep Learning architectures like AlexNet, GoogleNet, recurrent neural networks (RNN) convolutional neural networks (CNN), region-based CNN (RCNN), SegNet, generative adversarial network (GAN), etc. Since these are quite hefty concepts, you need to dedicate a few weeks solely in understanding their functioning.
- Computer Vision
Computer Vision (CV) is a scientific domain of study that seeks to find ways and develop techniques that will allow computers to understand digital content like videos and photographs. It involves “acquiring, processing, analyzing and understanding digital images” to attain highly specialized data from the real world to create numerical/symbolic information further. Being one of the hottest areas of exploration now, every aspiring Data Scientists needs to have a good knowledge of Computer Vision.
- NLP
Natural Language Processing is an integral component of Data Science. Thus, every Data Scientist must have a strong understanding of NLP and its techniques. Primarily, NLP seeks to process, analyze, and understand natural language-based data (text, speech, etc.) through a combination of sophisticated tools and algorithms. While dealing with NLP, you’ll be learning about Data Retrieval (along with Web Scraping), Text Wrangling, Named Entity Recognition, Parts of Speech Tagging, Shallow Parsing, Constituency and Dependency Parsing, and Emotion and Sentiment Analysis.
Concluding Thoughts
Every day, the global data continues to increase, and with it is expanding the scope for innovation and creation. As Big Data and Data Science technologies continue to advance, the job portfolio of Data Scientists will also change in keeping with the times. So, how then, do you keep up? By upskilling. Data Science is a dynamic field that’s still evolving. To becomes a Data Scientist, you must always harbor an unquenchable thirst for knowledge and learning. If you do so, there’ll be nothing to stop you from shining in the field of Data Science.
Frequently Asked Questions (FAQs)
1. Are the terms Deep learning and Machine learning different from each other?
Machine learning is utilized in many apps on our phones, including search engines, spam filters, websites that provide personalized recommendations, banking software that detects odd transactions, and speech recognition. Deep learning is a kind of machine learning in which algorithms are organized in layers to build an 'artificial neural network' that can learn and make decisions on its own. Deep learning is a subset of machine learning in the practical sense. Actually, deep learning is a type of machine learning that works similarly to traditional machine learning. As a result, the names are occasionally used interchangeably. While simple machine learning models do improve over time at whatever task they are given but they still require some supervision. With the use of a deep learning model, an algorithm can use its neural network to assess if a prediction is correct or not.
2. Is Natural Language Processing (NLP) important in Data Science?
The art and science of collecting information from text and putting it into computations and algorithms is known as Natural Language Processing (NLP). It remains a must-have for all data scientists, given the proliferation of data on the internet and social media. NLP is critical because it aids in the resolution of language ambiguity and provides valuable mathematical structure to data for a variety of downstream applications, such as speech recognition and text analytics. When faced with the task of analyzing and constructing models from textual data, it is necessary to be familiar with basic Data Science tasks.
3. What should a data science portfolio contain?
Strong data science portfolios generally show an applicant's technical talents, originality in developing research topics, ability to analyze data and make conclusions, desire to work with others, and ability to clearly explain their results to audiences that aren't technical. Your portfolio should, in general, highlight your finest or most recent work. While data analytics portfolios are often used to showcase your work, they should also emphasize your personality, communication abilities, and personal brand.