- Blog Categories
- Software Development
- Data Science
- AI/ML
- Marketing
- General
- MBA
- Management
- Legal
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- Software Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Explore Skills
- Management Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
Top 12 Linear Regression Interview Questions & Answers [For Freshers]
Updated on 23 September, 2022
7.29K+ views
• 8 min read
Data Science and Machine Learning Interviews revolve a lot around Machine Learning algorithms and techniques. Linear Regression is the most frequently asked of them as it is generally the most basic algorithm one studies. Not only that, Linear Regression is widely used across the industry in multiple domains.
Top Machine Learning and AI Courses Online
Linear Regression Interview Questions & Answers
Question 1: How Does Linear Regression Work?
Linear Regression, as its name implies, tries to model the data using a linear relation of the independent variables to the dependent variable or the target. If there is just one independent variable/feature, it is called Simple Linear Regression. If there are multiple features, it is called Multivariate Linear Regression.
Trending Machine Learning Skills
Regression, basically, means finding the best fit line/curve to your numerical data — a functional approximation of the data. That is, you want a mapping function of your input data to the output data (target). This mapping function is written as:
Ŷ = W*X + B
where B is the intercept and W is the slope of the line and Ŷ is the predicted output. The optimum values of W and B need to be found to find the best fit line
Question 2: How Does Linear Regression Find Optimal Point?
Linear Regression uses the Least Squares method to find the optimal point where the squared error is minimum. It finds the optimal values of the weight by an iterative and approximation method called Gradient Descent. Initially, random values of the weights are taken and then the loss is calculated for each instance.
After calculating the cumulative error of the whole dataset, a small step towards the minima is taken and the weights are updated by this change. Slowly, by taking these small steps towards the minima, the values of the weights reach approximately to the minima and the algorithm exits.
Question 3: What is Learning Rate?
Learning Rate or alpha is a hyperparameter that needs to be of the optimal value for the algorithm to converge quickly with the least error. Alpha controls the magnitude of the step size taken during Gradient Descent for converging to global minima.
The bigger the value of alpha, the larger will be the step size and the convergence might be faster. If alpha is too small, then it might take a long time to converge. But if the alpha is too big then it might start overshooting and not converge at all. Finding the right value of alpha is done during Hyperparameter optimization.
Question 4: What are the Assumptions of Linear Regression?
Linear Regression makes a lot of assumptions about the data to make calculations easier. And that makes it a lot more vulnerable to poor results as the data might not agree with those assumptions. Some of the most vulnerable assumptions are:
- Linear Relationship: First and the most obvious assumption it makes is that the features are linearly related to the target. In other words, the best fit line will be linear. But this usually is not the case most of the times.
- No Multicollinearity: Linear Regression tries to estimate coefficients of all the features according to their impact on the target. But this calculation is hampered when features themselves are dependent/collinear to each other.
- Homoscedasticity: With reference to LR, Homoscedasticity means that the errors or the residuals have similar values. In other words, if you plot the residuals vs predicted values, there should be no clear pattern. However, if the data has heteroscedasticity, the assumption would be broken and results can’t be trusted.
Question 5: What are the Different Types of Gradient Descent in Linear Regression?
There are mainly 3 types of gradient descents.
Vanilla Gradient Descent updates the weights after every epoch, which means that in essence, it takes the average loss of all the iterations of training instances and then updates the weights at the end of the epoch.
This is not ideal as it might not capture details, hence Stochastic Gradient Descent updates the weights with the loss obtained in every iteration in every epoch. That’s a lot of updates! So this makes the optimization curve noisy and time-consuming as well.
Mini-Batch Gradient Descent is sort of a middle ground between Vanilla and Stochastic. It forms batches of the complete dataset and then updates the weights at the end of every batch. This not only makes the optimization better and faster but also helps when the dataset is huge and you cannot load all of it at once.
Question 6: What is Heteroscedasticity?
With reference to Linear Regression, Heteroscedasticity simply means that the residuals of the observations do not possess the same variances. This would mean that the observations are actually from different probability distributions with different variances. And this defies one of the assumptions of Linear Regression. The quickest way to check for Heteroscedasticity would be to plot residuals against the predictions and see for any pattern. If a pattern exists, there might be Heteroscedasticity present.
Question 7: What is Multicollinearity and How can it Impact the Model?
Multicollinearity occurs when multiple features in a regression model are correlated or dependent on each other to some extent. Change in the value of one feature will also force change the value of features collinear to it. In other words, such features add no more information to the model. This can lead to Overfitting as it might give unpredictable results on unseen data.
Question 8: How to Measure Multicollinearity?
To measure Multicollinearity, the 2 most common techniques are – Correlation Matrix and Variance Inflation Factor(VIF). The correlation Matrix just contains the correlation values of each feature with every other feature. Extreme values signify a high correlation.
VIF is another method to quantify correlation, with the value of 1 meaning no Collinearity and >5 meaning high collinearity.
Question 9: What are the Loss Functions used in Linear Regression?
Mean Squared Error and Root Mean Squared Error are the two most common loss functions used in Linear Regression.
Question 10: What Metrics are used for Linear Regression?
The most common metrics used for Linear Regression are R Squared score and Adjusted R Squared score. The higher the value of R2, the better is the performance of the model. However, this is not true all the times as R2 always increases upon adding new features. This means that even if the feature is not significant, the R2 value will still increase. This shortcoming is overcome by Adjusted R Square which increases only if the newly added feature is significant.
Also Read: Linear Regression Models
Question 11: What are the Limitations of Linear Regression?
One limitation of LR is that it is quite sensitive to outliers in the data. Another limitation is the high bias in it due to its assumptions of the data. This can lead to a very poor model.
Question 12: What are the Different Types of Regularized Regression Algorithms?
There are mainly two types of regularized versions of Linear Regression: Ridge and Lasso. Both the algorithms include a penalty term which helps reduce the overfitting of the linear model. Lasso applies the absolute penalty, so some terms or weights of features less significant reduce to zero. With Ridge, the coefficients of less significant features come close to zero as it uses squared penalties.
Popular AI and ML Blogs & Free Courses
Conclusion
Linear Regression is the most fundamental algorithm in Machine Learning. In this tutorial, we covered some fundamental questions that are very frequently asked in interviews. The interviewers can also ask scenario-based questions by giving examples of some data and results.
upGrad provides a PG Diploma in Machine Learning and AI and a Master of Science in Machine Learning & AI that may guide you toward building a career. These courses will explain the need for Machine Learning and further steps to gather knowledge in this domain covering varied concepts ranging from Gradient Descent to Machine Learning.
Frequently Asked Questions (FAQs)
1. Should freshers learn machine learning?
Even though machine learning jobs are predominantly for experienced professionals, freshers can also bag these jobs provided they have the required skill set and knowledge. Freshers need to acquire skills in programming using languages like R and Python, which are extensively used for writing machine learning programs. They need to be familiar with mathematics, especially statistics and probability, and have a basic understanding of distributed computing and machine learning algorithms. The rising demand for proficient machine learning engineers makes this field a highly lucrative career option. Thus, machine learning can offer a significant career boost to freshers.
2. How much does a machine learning engineer earn?
The average salary of a machine learning engineer in India ranges from around INR 6.5 to 8 lakhs an annum. Candidates with a Master's degree or advanced degrees in data science or analytics and relevant work experience of 5 to 15 years can expect to earn INR 8 to 16 lakhs a year. Machine learning engineers with mid-level work experience are also known to earn at least INR 1 crore. However, how much a machine learning engineer makes depends on several factors like essential skill set, knowledge, overall work experience, certifications, location, relevant hands-on experience, problem-solving abilities, and more. It also depends on the role and compensation that the recruiting organization offers.
3. Are data scientist jobs rewarding in India?
Currently, proficient data scientists are in high demand in India, but there are not enough of them to fill the vacancies. This demand is mainly created by Indian businesses and multinational organizations that are increasingly shifting towards digitization to stay ahead of the competition. Increasing digital footprints are generating massive volumes of user data, creating more job opportunities for data scientists. With 4-10 years of work experience, data science professionals can earn in the range of INR 35-60 lakhs, while more experienced professionals can earn up to INR 1 crore a year.
RELATED PROGRAMS