- Blog Categories
- Software Development
- Data Science
- AI/ML
- Marketing
- General
- MBA
- Management
- Legal
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- Software Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Explore Skills
- Management Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
Machine Learning Cheat sheets Every ML Engineer Should Know About
Updated on 03 July, 2023
7.67K+ views
• 9 min read
Table of Contents
- Python Cheat Sheet by Dave Child
- Numpy Cheat Sheet by Justin
- Pandas Cheat Sheet by Sanjeev
- Matplotlib cheat sheet by Justin
- Scikit Learn Cheat Sheet by Sati
- Deep Learning Cheat Sheet 1webzem
- Azure ML Algorithm Cheat Sheet by Microsoft
- Neural Network Architectures Cheat Sheet by Fjodor Van Veen
- SAS Algorithm Flowchart by Hui Li
- PySpark Cheat Sheet by Data Camp
- The Road Ahead
In the past couple of decades, machine learning has drastically changed the way things work and how decisions are made. Today, almost every industry is making efficient use of different machine learning concepts in one way or the other. Due to this, there has been a drastic increase in the number of machines learning-related jobs, and more and more job seekers and freshers are trying their best to learn machine learning skills.
We all know that machine learning is a vast field, and there are numerous concepts that one needs to remember, even if he/she is frequently exposed to similar tasks. Hence, it becomes effortless for learners to revise and revisit the basic concepts and tricks if they have access to some short notes. It helps them prepare for interviews, refer while making new changes, and even quickly discover a new concept. Hence, in this article, we will list the top machine learning cheat sheets that will help the professionals and learners of machine learning.
Top Machine Learning and AI Courses Online
Python Cheat Sheet by Dave Child
To start with any digital development, one needs a programming language. Python is the most preferred programming language for machine learning enthusiasts due to its ease of use, full accessibility, and excellent community support. Hence, keeping the syntax and basic tricks in handy helps whenever you need to brush up the functioning of the language.
Trending Machine Learning Skills
Enrol for the Machine Learning Course from the World’s top Universities. Earn Masters, Executive PGP, or Advanced Certificate Programs to fast-track your career.
This beautiful sheet by Dave Child contains all the essential functions of strings, lists, etc. It also has a vast set of information on the system and local variables, slicing, and data formatting methods. Hence, for machine learning enthusiasts, this cheat sheet for Python satisfies the purpose of quick remembering and referencing.
The Python cheat sheet for machine learning enthusiasts by Dave Child can be found here.
Numpy Cheat Sheet by Justin
We all know that machine learning is all about numbers. In fact, in machine learning, we have a large set or large arrays of numbers. Although there are inbuilt options like lists and tuples to manage this data, they are not as usable as per the requirements. Hence, most of the machine learning enthusiasts use a library dedicated to numerical computations called Numpy.
Numpy is one of the most popular libraries that can handle large arrays and manipulate them according to user needs. While playing with a broad set of data, Numpy saves a lot of time for the user and makes it easier for him/her to intuitively understand the flow and structure of the data.
This beautiful cheat sheet by Justin covers all the primary syntactical techniques used in Numpy. It includes all the primary array operations, multidimensional access, etc. A quick view of the ordinary and binomial distribution is also provided.
The Numpy machine learning cheat sheet can be accessed here.
Pandas Cheat Sheet by Sanjeev
If you are doing intensive machine learning, there are high chances that you will be reading and writing different kinds of data regularly. Although Python has some inbuilt libraries to do the task, it does not stand as per the expectations for reading and analyzing vast amounts of complex data. For this, most of the machine learning professionals and learners use Pandas.
Pandas is a library that makes it very easy for the users to read complex data forms, select important information, and write data accordingly. Hence, keeping a cheat sheet handy helps in quickly referencing syntax and techniques.
This cheat sheet provides a quick look into the essential functions like reading the data, selecting sorting, etc. On top of this, it also includes basic data queries like joins, merges, etc.
The Pandas machine learning cheat sheet can be accessed here.
Matplotlib cheat sheet by Justin
Matplotlib can quickly draw complex graphs and diagrams.
When you are supposed to work with a huge amount of data, it becomes sometimes challenging to analyze and visualize the type and flow of data. Before making any algorithms, it is imperative to understand how the data is behaving. For this purpose, we use visual representations. There are several graphs and plots like a bar graph, box plot, line graphs, etc. that can be plotted for this purpose.
Matplotlib is a beautifully designed library that helps the users to plot multiple kinds of graphs in one place. It is trendy for its ease of use and flexibility.
This cheat sheet gives you instant access to plot basic diagrams and figures. It shows all the syntax of matplotlib’s popular component Pyplot for plotting bar graphs, line graphs, legends, pie charts, etc.
The Matplotlib machine learning cheat sheet can be found here.
Scikit Learn Cheat Sheet by Sati
Now we have all the necessary cheat sheets required for handling the data. Once we get the data, we tend to apply algorithms and machine learning models to it in a quest to make a better sense out of the structured data. Writing models from scratch is a very tedious and repetitive task. Hence, professionals have developed specific libraries to run these models and train more and more new models on the datasets we get.
One of such libraries is Scikit Learn. This is one of the most popular libraries used to train new models and test them on real data. Different algorithms from logistic regression to complex clustering can be used with the help of this library. Hence, it is essential to keep all the syntax and basic concepts handy.
This cheat sheet includes all the basic syntax and theory for regression, cross-validation, clustering, etc. topped with trivial visualizations.
The machine learning cheat sheet for Scikit Learn can be accessed here.
Deep Learning Cheat Sheet 1webzem
Deep learning models give better accuracy over a large amount of data.
Although Scikit covers a wide range of machine learning algorithms, when the data grows more massive, and patterns become complex, those algorithms tend towards a saturation point in terms of accuracy. Hence, we need more sophisticated and robust models powered by Deep Learning. The mathematics and theory involved in Deep Learning algorithms are very complex and need frequent revision. Hence, using a cheat sheet is very advisable.
Popular AI and ML Blogs & Free Courses
The deep learning cheat sheet by 1webzem contains most of the underlying algorithms, the syntax of the most popular deep learning library– Keras, and a few theoretical concepts that are used frequently.
The machine learning cheat sheet for deep learning can be accessed here.
Also Read: Tensorflow Cheat Sheet
Azure ML Algorithm Cheat Sheet by Microsoft
The Microsoft Azure team has developed this cheat sheet itself to help you select the correct algorithm for a predictive analysis model. It is important to remember that your choice depends on the nature of the data and the subsequent goal you want to compete with it.
The Azure machine learning algorithms cheat sheet gives you a clear idea about the nature of the data. It is helpful to navigate the massive library of algorithms from clustering, regression, classification, recommender systems, text analytics and anomaly detection families.
Each algorithm helps you solve a different machine learning problem. Remember the cheat sheet is a starting point, and you may have issues requiring multiple algorithms to solve or just one to tackle other issues. Trial and error is a good way to understand which one works best.
The Azure machine learning cheat sheet can be found here.
Neural Network Architectures Cheat Sheet by Fjodor Van Veen
One of the best machine learning cheat sheets out there, the neural network architectures cheat sheet helps you navigate the new and old neural network architects and their abbreviations.
Since new architectures are being developed every day, the list is not comprehensive as it came out a while back. However, you will find several useful neural networks to achieve your objectives. You can also refer to the explanations provided in the blog to learn more about those that you might not be familiar with.
The neural network architectures cheat sheet can be found here.
SAS Algorithm Flowchart by Hui Li
The SAS algorithm flowchart is a great ml cheat sheet for beginners and those familiar with the basics of machine learning. Anyone struggling to identify and use ml algorithms will find this comprehensive cheat sheet useful. You can easily refer to the flowchart to identify and address your problem.
Since beginners often face the question of using the right algorithm for their purpose, the cheat sheet gives them multiple options to choose from and apply the one that seems the most suitable for their problem.
Read the blog to gain insight into how to use the cheat sheet. The algorithms offered in the cheat sheet have been taken from tips and feedback offered by various machine learning experts and developers. Further algorithms will be added subsequently as the available methods grow, and the library increases.
The SAS algorithm flowchart can be found here.
PySpark Cheat Sheet by Data Camp
A basic PySpark cheat sheet, this document will tell you how to initialize Spark and load the data, retrieve RDD information, sort, filter and sample the data. You will also be able to learn how to merge, iterate, repartition and save the data, along with stopping the SparkContext.
There are various other PySpark cheat sheets available on the website that you can use to solve your data issues. When you go through the document, you should remember that it has taken small data sets as examples of portraying certain data functions. In real life, you will be analyzing big data using Spark.
The PySpark cheat sheet can be found here.
The Road Ahead
If you are a machine learning enthusiast and want to emerge further into your career, you should opt for upGrad’s PG Diploma in Machine Learning & AI. This program is mentored by one of the best instructors from IIIT-B. It will cover all the essential topics like data visualization, machine learning, deep learning, etc. followed by real-life industry projects.
Frequently Asked Questions (FAQs)
1. What are the skills needed to become a machine learning engineer?
You should definitely have a good grasp of software engineering and programming concepts. In addition, you should be familiar with concepts like NLP, reinforcement learning, etc. Apart from the technical skills, some soft skills are also required. You must know how to communicate with your clients and team members. Last but not the least, you should have a thirst to learn more about ML in order to grow and eventually perform well.
2. What are the mandatory certifications required if you are willing to become an ML engineer?
Most machine learning engineering jobs need a bachelor's degree in a related subject like computer science, mathematics, or statistics, and some even demand a master's degree or Ph.D. in machine learning, computer vision, neural networks, deep learning, or another similar topic. Certifications in machine learning, artificial intelligence, or data science are beneficial outside of higher education since they offer applicable skills.
3. Should I learn SQL if I want to become a machine learning engineer?
In machine learning, pattern detection is a crucial step. By organizing enormous amounts of data, SQL considerably improves pattern recognition. SQL is the simplest language for querying data. Additionally, mastering SQL will allow you to take advantage of efficiencies later on by combining SQL with Python. Hence, SQL leverages the benefits of the R language when used in combination with a relational database for machine learning applications. If you want to be a machine learning engineer, understanding SQL is not only necessary, but it will also make a lot of your job easier.
RELATED PROGRAMS