- Blog Categories
- Software Development
- Data Science
- AI/ML
- Marketing
- General
- MBA
- Management
- Legal
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- Software Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Explore Skills
- Management Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
- Home
- Blog
- Artificial Intelligence
- Top 9 Machine Learning Libraries You Should Know About
Top 9 Machine Learning Libraries You Should Know About
During the early days of Machine Learning – when it was not yet a mainstream technology – Developers had to perform Machine Learning tasks by manually coding each ML algorithm using mathematical and statistical formulas. Naturally, the process was both time and labour-intensive. Thankfully, we don’t have to do this anymore!
Best Machine Learning and AI Courses Online
Ever since Machine Learning entered the mainstream tech domain, the ML community has been evolving at an unprecedented pace. As a result, today, we have an exhaustive inventory Machine Learning libraries and Machine Learning frameworks at our disposal.
Essentially, Machine Learning libraries refer to sets of functions and routines written in a specific programming language. These libraries make the task of ML Developers/ML Engineers much easier by allowing them to perform complex tasks without having to rewrite endless lines of code.
In-demand Machine Learning Skills
In this post, we’ll talk about some of the most popular and widely used Machine Learning libraries.
Top Machine Learning Libraries
1. TensorFlow
When talking of Machine Learning libraries, we must mention TensorFlow first. After all, it is undoubtedly one of the most popular Machine Learning libraries in the world. Developed by Google, TensorFlow is an open-source, JavaScript-based Machine Learning library explicitly designed for numerical computation using data flow graphs. It comes equipped with an assortment of useful tools, libraries, and resources that help in building, training, and deploying ML applications in a hassle-free manner. The best part is that it can run on GPUs, CPUs, and even on mobile computing platforms.
TensorFlow is extensively used for training and deploying models on Node.js as well as in browsers. While you can use the core library to develop and train ML models in browsers, you can use TensorFlow Lite (a lightweight library) to deploy models on mobile and embedded devices. If you wish to train, validate, and deploy ML models in large production environments, TensorFlow Extended is there to help you.
2. NumPy
NumPy is a Python-based Machine Learning library for scientific computing. It includes sophisticated (broadcasting) functions, tools for integrating C/C++ and Fortran code, and a powerful N-dimensional array object. NumPy is extensively used for large multi-dimensional array and matrix processing by using high-level mathematical functions. Apart from this, it is excellent for linear algebra, Fourier transform, and random number capabilities.
You can use NumPy as an efficient multi-dimensional container of generic data wherein arbitrary data-types can be defined. This further encourages seamless and speedy integration with many different databases.
Get ai certification online from the World’s top Universities – Masters, Executive Post Graduate Programs, and Advanced Certificate Program in ML & AI to fast-track your career.
3. SciPy
SciPy is a Python-based ML ecosystem for mathematics, science, and engineering. It is primarily used for scientific and technical computing. SciPy builds on the NumPy array object. It is a component of the NumPy stack including tools like Matplotlib, Pandas, SymPy, and a host of other scientific computing libraries. The underlying data structure leveraged by SciPy is a multi-dimensional array offered by the NumPy module.
SciPy contains modules for some of the commonly performed tasks in scientific programming such as optimization, linear algebra, integration, interpolation, special functions, FFT, signal and image processing, ordinary differential equation solving, ad much more.
4. Scikit-Learn
Scikit-Learn is an open-source Python-based Machine Learning library that is built on three other Python Libraries – NumPy, SciPy, and Matplotlib. Scikit-Learn packs in a host of ML algorithms including classification, regression, clustering and dimensionality reduction, Naive Bayes, Gradient boosting, K-means, model selection, to name a few. It is an excellent tool for data-mining, data analysis, and statistical modelling.
One of the best features of Scikit-learn is that it has excellent documentation along with a huge support community. Its only drawback is that it does not support distributed computing for large scale production environment applications.
5. Theano
Another Python-based Machine Learning library on our list, Theano is quite similar to NumPy. It can take structures and convert them into efficient code that uses NumPy and other native libraries. Theano is mainly used for numerical computation. It can handle different types of computation required for large neural network algorithms used in Deep Learning.
Theano lets you define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It has neat symbolic differentiation and allows for dynamic code generation in C. Perhaps the greatest aspect of this ML library is that it takes advantage of GPU which makes data-intensive calculations up to 100 times faster than when it runs on CPU alone. Theano’s speed is what makes it a potent tool for complex computation tasks and Deep Learning projects.
6. PyTorch
PyTorch is one of the open-source Deep Learning libraries that drew inspiration from the Torch library. It was developed by Facebook’s AI research team, and as the name indicates, it is a Python-based library. While it has a C++ frontend, it features a highly polished Python interface.
PyTorch is mainly used for natural language processing and computer vision applications. The “torch.distributed” backend of PyTorch enables scalable distributed training and performance optimization both in research and production. The two core features of PyTorch are Deep Neural Networks (based on a tape-based auto diff system) and Tensor computing using GPUs.
7. Keras
Keras is an open-source neural network library written in Python. It can run on top of TensorFlow, Theano, Microsoft Cognitive Toolkit, and PlaidML. Since Keras was designed to facilitate fast experimentation with Deep Neural Networks, it is highly user-friendly, modular, and extensible. While Keras can very well handle rapid experimentation with Deep Neural Nets, it cannot support low-level computation so well – it uses the “backend” library for this purpose.
The biggest advantage of Keras is speed. It has built-in support for data parallelism and hence, it can process large volumes of data while simultaneously speeding up the time needed to train models.
8. Pandas
Pandas is one of the best open-source data manipulation and data analysis libraries available today. It is based on NumPy that contributes numerous useful functions for accessing, indexing, merging, and grouping data. In fact, Pandas can be considered as the Python equivalent of Microsoft Excel – when it comes to any kind of tabular data, you must consider Pandas.
Pandas was developed explicitly for data extraction and preparation. So, while it may not be directly related to ML, it comes in handy for data preparation before training ML models. It has many high-level data structures and a wide variety of tools for data analysis along with inbuilt methods for groping, combining and filtering data. Pandas allows you to perform standard operations by writing only a few lines of code. For complex tasks, there are many Pandas commands that can help to make your code concise and neat.
9. Matplotlib
Matpoltlib is one of the most important data visualization library written in Python. It is a 2D-plotting library that can be used to create 2D-graphs and plots. Just like Pandas, it is not directly related to Machine Learning. However, it is a powerful visualization tool that helps in visualizing patterns in large datasets.
Matplotlib has an object-oriented API for embedding plots into applications using general-purpose GUI toolkits ( for example, Tkinter, wxPython, Qt, and GTK+). It also contains the PyPlot module that makes the plotting process easier by offering features to control line styles, font properties, formatting axes, and so on. With Matplotlib, you can create plots, bar charts, histograms, power spectra, error charts, scatterplots, and much more.
Popular AI and ML Blogs & Free Courses
Conclusion
These are 9 of the best Machine Learning libraries you can get your hands on! The Machine Learning libraries we’ve mentioned here should take care of almost every ML need and requirement.
You can check our Executive PG Programme in Machine Learning & AI, which provides practical hands-on workshops, one-to-one industry mentor, 12 case studies and assignments, IIIT-B Alumni status, and more.
Frequently Asked Questions (FAQs)
1. How long does it take to learn Machine Learning?
2. Can non-technical people learn Python?
3. What jobs can you get after learning Machine Learning?
4. Why are libraries used in Machine Learning?
5. What are the functions in NumPy and SciPy libraries?
6. What is GUI?
Get Free Consultation
India’s #1 Tech University
Top Resources