- Blog Categories
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Gini Index for Decision Trees
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Brand Manager Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Search Engine Optimization
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
Top 6 Machine Learning Solutions
Updated on 04 January, 2024
6.12K+ views
• 9 min read
Table of Contents
Machine learning (ML) is an application of artificial intelligence (AI). Machine learning equips the systems with the ability to automatically learn and make improvements from experience without being explicitly programmed. The ML algorithms employ statistics to find patterns in massive patterns of data and use them to learn for themselves.
Machine Learning Solutions: Why Do They Matter So Much?
The “machine” in machine learning is becoming increasingly unpredictable. Therefore, comprehensive solutions that begin at the gadget level as well as predictive maintenance in machine learning are now necessary. Everywhere must have ML-enabled, including the outer edges of a network, centralized data centers, smartphones, fitness trackers, industrial machinery, and sensors for preventive maintenance.
Thanks to ML solutions, now developers can replicate and sustain their development efforts throughout a range of applications, such as IoT or data processing on low-power gadgets in an edge.
Top Machine Learning and AI Courses Online
The goal of ML is to allow computers to learn automatically without any intervention or input, or assistance from humans. The data used for learning comprises numbers, images, words, etc. According to a recent study, 77% of the devices that we use today utilize ML facilities.
The platforms using ML are search engines like Google and Baidu, recommendation systems of Netflix, YouTube and Spotify, voice assistants like Siri and Alexa, and social media feeds like Facebook and Twitter.
The principle of ML comprises collecting as much data as possible and using it for learning and guessing what thing you must like next. ML finds a pattern and applies the knowledge gathered to use by suggesting the next options for the concerned person.
Trending Machine Learning Skills
Enrol for the Machine Learning Course from the World’s top Universities. Earn Masters, Executive PGP, or Advanced Certificate Programs to fast-track your career.
The trends keep evolving in this fast-paced new world of technology with new developments happening all over the world. Here, we predict what the future holds with the top machine learning solutions.
Top Machine Learning Solutions for 2022
1. Cutting Edge Model Availability
Since the time ML is becoming more widely adopted, a parallel trend with open access to models is also witnessing a rise in its popularity and development. The large companies developing ML are raising the bar for model performance in parallel as well. This is possible due to the large and comprehensive datasets that are available with them, which they use to train models by dedicated ML practitioners.
However, not all companies possess the capital or research technology to build such models from scratch. Hence, they are using the help of transfer learning wherein they can build upon or repurpose models that have undergone extensive training to develop high-performance models. Meanwhile, even the large enterprises have recognized the importance and benefits of such contributions from the outside for the development of their models.
The open-access models or public models can be used by students too who are experimenting with ML. Similarly, hobbyists and other groups can also use these base models. The successful experiments may contribute to these models and, at the same time, enhance their career growth.
2. Hyper-Automation
Hyper-automation supports the idea of almost anything inside a company can be automated. It has been gaining popularity for some time around the world now, but with the pandemic last year, its necessity and emphasis on it has increased even further. Intelligent process automation and digital process automation has experienced a boost.
The driving force for hyper-automation is ML and AI, which are its key segments. The essential requirement for automated business processes to proceed is that they must be able to adapt according to the changing conditions and also react to sudden circumstances when the time comes.
Related: Top Machine Learning Applications
Get machine learning certification online from the World’s top Universities – Masters, Executive Post Graduate Programs, and Advanced Certificate Program in ML & AI to fast-track your career.
3. Superior Supporting Tools for ML
In today’s times, producing a working ML model that makes fairly good predictions is not enough. The ML practitioners require model interpretability wherein they understand why predictions are being made before deciding whether the model should go into production. This is often important in the case of enterprises where the predictions are scrutinized for societal factors such as social justice, ethics and fairness.
A powerful tool for model development is the use of model cards that are design documents that formally describe all aspects of a model. The aspects include the following details-
- Detailed overview consisting of a summary of the model’s purpose.
- Logistics about the author links to additional documents, license, date, etc.
- Specifications about neural networks or types of layers, inputs and outputs.
- A summary about its limitations and considerations, including information regarding ethical and privacy issues, speed and accuracy constraints.
- A target and actual performance metrics that is basically expected versus actual accuracy.
Visualization is another key tool. An invaluable aspect is the ability to visualize a model during design, training and even during the audit.
The model cards can be used by team members to constantly evaluate the model performance against what is specified on a card.
4. Business Forecasting and Analysis
ML can contribute towards business forecasting and help in making important, informed decisions related to business. The experts gather and screen a set of data over a fixed period of time, which is then utilized for making smart decisions. Once ML is trained with diverse data sets, it can provide conjectures with accuracy as high as approximately 95%.
We predict that organizations would fuse recurrent neural networks and obtain high-fidelity forecast results. One of the main advantages of using ML is finding the hidden patterns that may have been missed out upon. The best example for its use is in insurance firms to identify potential frauds that could be very costly. ML might assist in discovering hidden patterns and make accurate forecasts accordingly.
5. ML and Internet of Things (IoT)
Economic analyst Transforma Insights has forecasted that the IoT market will develop 24.1 billion devices in 2030, leading to $1.5 trillion in income throughout the world due to its rapid development.
The utilization of machine learning and the Internet of Things is intersected. Production of IoT devices utilizes ML, AI and deep learning to make the services smarter and more secure. In a similar manner, networks of IoT sensors and devices provide gigantic volumes of data for ML and AI for them to work effectively.
6. ML at the Edge
It is predicted inference at the edge will grow substantially throughout 2022. Among the various factors contributing to this growth, the main two are the growth of IoT and a greater reliance on devices for doing remote work.
Enterprise-oriented and consumer devices like Google-mini employ cloud-backed ML. Basically, cloud-backed ML collects data by conjuring up images of tiny devices with internet access and sends it to the cloud for inference. It is necessary in many situations like detecting fraud by banks and in cases where longer latency is not an issue. But, in the case of edge devices, they are gaining the processing power required to perform interference at the edge.
An example of such technology at the edge is Coral by Google. It possesses an onboard tensor processing unit (TPU) and handles numerous IoT use cases (eg. analyzes voices and images). This shows that inference is now possible without any internet connection and cloud back end with the technology packed into a small form factor. The added advantage that ML at the edge offers is security by keeping the collected data on the device itself.
Technically the above-mentioned deployments demand smaller ML models that are transferred quickly and fit into embedded devices with limited storage. Here, quantization is the solution to reduce the model’s size.
According to the statistics provided by Gartner, ML is being used in some form or the other in approximately 37% of all companies for their business that was reviewed. It is also estimated that around 80% of the modern advances will be founded on ML and AI by the year 2022.
Other Machine Learning Solutions You Must Know About
Responsible AI
Although ML and AI are becoming more and more popular, businesses still need to use them appropriately. However, responsible AI is an advancement in machine learning that is rapidly expanding in the industry.
An AI system has to be impartial in this sense, independent of user traits such as ethnicity, gender, or religion. Furthermore, teams should have access to explainable machine learning solutions that show them how a model behaves in a particular situation.
Finally, businesses must emphasize the significance of a governance system and make sure AI is used appropriately. Solutions encouraging the proper use of popular technology are expected to become more prevalent in the future years.
ML Democratization
The cloud computing platform highlighted the second important Machine Learning trend on our list, which is ML democratization. This trend predicts that technology will become more accessible to everyone, democratizing knowledge and resources.
Along with the tool that is driven by use cases, machine learning is made simpler by no-code and low-code applications. Deep learning solutions will be used to address the issues and difficulties associated with democratization.
Non-technical staff members will be able to create applications more quickly thanks to these no-code and low-code machine learning technologies. It enables you to eliminate expensive development expenses and shorten delivery times.
Recent statistics show that 60% of corporate data worldwide is stored in the cloud. To fulfill the constantly changing demands of the tech industry, more money will be invested in resiliency and cloud security in 2024.
Natural Language Processing
This solution is ideal for you when you want to evaluate a lot of customer data, incorporating opinions from customers, enhance user experience, or combine business and customer engagement initiatives. More on this later!
ML Technological Segments
The following technological fields will use machine learning solutions the most:
- Cybersecurity: As digitization spreads into more professions, the necessity to safeguard private data is growing. Artificial intelligence (AI) and machine learning are clever technologies that assist businesses in maintaining data security and privacy.
- Automation: A wide range of businesses, including banking and security, are incorporating autonomous software systems. AutoML solutions aims to simplify challenging operations for data scientists involved with machine learning applications. Smart automation in businesses will enable them quickly respond to current changes thanks to new innovations.
- Distributed Enterprise Workforce: With remote work becoming the new norm in 2022, businesses will undoubtedly explore for fresh approaches to managing their workforces. Machine learning is the technology that will support teams in becoming more cohesive and hence enable scattered businesses to grow.
Popular AI and ML Blogs & Free Courses
There is a surge in demand and interest in ML with various new patterns and technologies ascending with the increasing number of useful applications.
Also Read: Machine Learning Projects for Beginners
Conclusion
With all the learnt skills you can get active on other competitive platforms as well to test your skills and get even more hands-on. If you are interested to learn more about the course, check out the page of Executive PG Programme in Machine Learning & AI and talk to our career counsellor for more information.
RELATED PROGRAMS